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Plasma Wind Tunnel (PWT)
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< Schematic of a plasma wind tunnel >

• Simulating hypersonic/high enthalpy flows

• Additional components with high power
– Plasma generator

– Cooling system, ejector, vacuum facility



Type of Wind Tunnel
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< Capabilities of aerothermal facility [1] >

“Hot” Wind Tunnel

“Cold” Wind Tunnel

Present



Characteristics of PWT

• Low Reynolds number
– 𝑹𝒆𝑫 = 𝟏𝟎𝟒~𝟏𝟎𝟔 (𝒗𝒔. 𝟏𝟎𝟓~𝟏𝟎𝟕 𝒊𝒏 𝑺𝑾𝑻)
– Viscous dominant / Damped shock wave
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< Pressure contour difference according to Reynolds number [2] >

Re = 30,000

Re = 3,000
Damped shock wave

Sharply defined shock wave



Characteristics of PWT

• Far higher pressure ratio required [2, 3]
– Owing to shock wave, dominant viscous effect

• May requiring long time test duration [4, 5]
– Ablation, Reentry test
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Pressure

Ratio

Test

Duration

Reynolds Number

(𝑅𝑒𝐷 =
𝜌∞𝑉∞𝐷

𝜇∞
)

SWT 𝟏𝟎𝟎~𝟏𝟎𝟐 𝟏𝟎𝟏~𝟏𝟎𝟐 𝐬𝐞𝐜. 𝟏𝟎𝟓~𝟏𝟎𝟕

PWT 𝟏𝟎𝟐~𝟏𝟎𝟑 𝟏𝟎𝟎~𝟏𝟎𝟑 𝒔𝒆𝒄.
𝟏𝟎𝟐~𝟏𝟎𝟓

(Present 2 x 𝟏𝟎𝟒)

< Difference between general SWT and PWT >



Motivation

• Prediction of pressure ratio
– Most of literature dealing with it

– Key design parameter to determine

(1) the type and spec. of the plasma generator

(2) vacuum facility capacity and spec.

(3) whether to use a boosting ejector

– Difficulties caused by flow characteristics [2, 6]

• Limited literature and information of PWT
– Frequently mentioned this limitation [2, 5, 6, 7]
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Motivation

• Wind tunnel start
– Shock wave pushed downstream

– Sufficient pressure ratio pushing shock wave

< Under-expanded (left) and over-expanded (right) jet of GHIBLI PWT [8] >

Starting Unstarting

9

Under-expanded Over-expanded

Shock wave

Shock wave

Pushed

downstream



Motivation

• Literature mainly focused on minimum
operable pressure ratio
– Initially assume wind tunnel already started

– Initial condition with very low back-pressure
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Nozzle

Starting, M > 1

TS Diffuser

Lowest Pb

= Highest P.R.

Terminal shock



Motivation

• Literature mainly focused on minimum
operable pressure ratio
– Gradually increasing back-pressure
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Shock moved upstream

Starting, M > 1

Nozzle TS Diffuser

Pb ↑



Motivation

• Literature mainly focused on minimum
operable pressure ratio
– Gradually increasing back-pressure

– Until the un-starting
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Pb max

= P.R. min
Starting, M > 1

Nozzle TS Diffuser

Efficient operating condition = lowest cost



Motivation

• Literature mainly focused on minimum
operable pressure ratio
– Pressure ratio for operation is important

– Necessary to consider starting pressure ratio
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Inoperable

M < 1

Nozzle TS Diffuser

How much P.R. to push the shock?



Objectives

• Numerical Investigation of the flow in PWT
– Shock train, terminal shock

– Flow variables including total pressure

• Investigate starting characteristics
– Decreasing / Increasing back-pressure

– Identifying

(1) maximum operable back-pressure

(2) starting back-pressure

(3) hysteresis
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Materials and Methods
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Governing Equations

• Axisymmetric Reynolds Averaged

Navier- Stokes (RANS) Equations

Conservative

Variables Convective and Diffusive Flux
Additional

Axisymmetric terms
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Modeling of Equilibrium

• (Air) Internal temperature up to 2,500K

– Vibrational excitation, chemical reaction occur [9]

9,000 K

Mode of energy

Chemical reaction

4,000 K2,000 K0 K

Vib. excitation

600 K

Tran, Rot.

None 𝑶𝟐 → 𝟐𝑶 𝑵𝟐 → 𝟐𝑵
𝑵 → 𝑵+ + 𝒆−

𝑶 → 𝑶+ + 𝒆−

0 K
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Modeling of Equilibrium

N2

O2

N

O

NO
NO+, e-

< Variation of specific heat (left) [9] and composition of air (right) >

Thermally perfect gas

𝜸 = 𝜸(𝑻)

Chemically reacting 

perfect gas

𝜸 = 𝜸(𝑻, 𝑷)



• Assume thermal and chemical equilibrium

– Air → Facilitating pre-established data [10, 11]
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Modeling of Equilibrium

< Examples of equilibrium properties of air calculated from correlation >



Modeling of Turbulence
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• Standard k-epsilon turbulence model [12]

– Used in related literatures [4, 6]

– Applicable to wall bounded internal flow

𝝏 𝝆𝒌

𝝏𝒕
+ 𝛁 ∙ 𝝆𝒌𝑽 = 𝛁 ∙ 𝝁𝒍 +

𝝁𝒕
𝝈𝒌

𝛁𝒌 − 𝝆𝜺 + 𝟐𝝁𝒕ന𝑬 ∙ ന𝑬

𝝏 𝝆𝜺

𝝏𝒕
+ 𝛁 ∙ 𝝆𝜺𝑽 = 𝛁 ∙ 𝝁𝒍 +

𝝁𝒕
𝝈𝜺

𝛁𝜺 + 𝑪𝟏
𝜺

𝒌
𝟐𝝁𝒕ന𝑬 ∙ ന𝑬 − 𝑪𝟐𝝆

𝜺𝟐

𝒌

𝝈𝒌 = 𝟏. 𝟎𝟎, 𝝈𝜺 = 𝟏. 𝟑, 𝑪𝟏 = 𝟏. 𝟒𝟒, 𝑪𝟐 = 𝟏. 𝟗𝟐, 𝑪𝝁 = 𝟎. 𝟎𝟗

𝝁𝑻 = 𝑪𝝁
𝝆𝒌𝟐

𝜺
𝝁 = 𝝁𝑳 + 𝝁𝑻



Computation
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• Mass flow rate difference less than 1 %

• Step-by-step steady calculations [2]

Numerical scheme

Convective flux

Differencing
AUSMPW+ [13]

Spatial

Reconstruction

TVD

with minmod limiter [14]

Psudo time

Integration
LU-SGS [15]

< Numerical schemes used in the study >



Computational Domain
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• Mach 7 Nozzle – Test section – Diffuser

• Structured mesh (quadrilateral)

– Node dimension: 1510 X 91

– Y+ less than 1.0 near the wall (y+ ~ 0.5)

Nozzle

Test Section
Diffuser

< Computational domain >



Computational Domain
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• Grid configurations of each parts
(a) Nozzle and Test Section (b) Diffuser Inlet

(c) Diffuser Throat (d) Diffuser Exit

< Grid configuration of each parts >



Grid Convergence Study
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• Grid dimension considered

– Double refined with distribution rules 

maintained

– 378 X 23 / 756 X 46 / 1511 X 91 / 3021 X 181

• Convergence check on

– Shock wave configuration

– Axial distributions of flow variables 

(Mach number, static pressure, total pressure)



Grid Convergence Study
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Pressure [Pa]

Coarse: 378 X 23

Fine: 1511 X 91

Very Fine: 3021 X 181

< Shock wave configurations with various grid levels >



Grid Convergence Study
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< Mach number (left) and pressure (right) distributions with various grid levels >



Inflow / Boundary Conditions
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• (Wall) Constant temperature of 300K

• (Diffuser exit) Constant back-pressure

– Varying back-pressure → control pressure ratio

• Axisymmetry

Wall B.C. of 300K

Axisymmetry B.C.

Inflow B.C. Back-pressure B.C.

< Boundary conditions applied >



Inflow / Boundary Conditions
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• (Inflow) NASA Langley AHSTF [16]

– 13MW Arc-Heated Scramjet Test Facility

– Based on reservoir condition of Mach 6

– Replace Mach 6 nozzle with Mach 7 nozzle

Nozzle inlet

(Inflow B.C.)

𝐏𝟎 28.6 bar

𝐓𝟎
ሶ𝒎

2216 K

2.04 kg/s

Nozzle exit 𝐌 7.0

< Inflow conditions and Nozzle exit Mach number >



Flow Analysis

of

Nozzle-Diffuser System
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Flow Distribution (General Aspect)
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Static Pressure

Mach number

< Flow distributions of pressure, Mach number, and total pressure >

Pt loss

Pt loss

First oblique shock wave

Terminal shock wave



Varying Back-pressures
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< Pressure distribution with different back-pressure >

Decreasing back-pressure

Increasing back-pressure

Start

Unstart



Varying Back-pressures
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• Decreasing back-pressure

– Before wind tunnel starting

< Pressure distribution with different back-pressure (Decreasing) >

Shock moves downstream



Varying Back-pressures
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• Decreasing back-pressure

– Decreasing TS pressure

< Pressure distribution of nozzle and test section before starting >

Static Pressure

(a) Pb = 10,000 Pa (Dcr.)

(b) Pb = 6,000 Pa (Dcr.)

Shock in nozzle

Over-expanded jet



Varying Back-pressures
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• Increasing back-pressure

– After wind tunnel starting

< Pressure distribution with different back-pressure (Increasing) >

Shock moves upstream

“Swallowed”



Varying Back-pressures
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• Increasing back-pressure

– Under-expanded flow at the nozzle exit

– TS isolated to downstream condition

< Pressure distribution of nozzle and test section after starting >

Static Pressure

(e) Pb = 5,000 Pa (Icr.)

M > 1 flow 
isolated downstream



Starting Characteristics
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Starting Characteristics
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< Pressure distribution with different back-pressure >



Starting Characteristics
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< Different flow distribution at same back-pressure of 5,000 Pa>

• Hysteresis

– Dependence of the state on its history



Starting / Operable back-pressure
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< Pressure at TS (x = 0.5 m) with different history of back-pressure >

(b)
(c)

(d)

(e)
(f)

Unstarting

Starting
Operable Pb

Starting Pb



Wind Tunnel Starting
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• Required pressure ratio ~ loss in PWT

– Loss in starting state < Loss in unstarting state

M >> 1 M < 1

Strong shock wave → severe loss

M >> 1 M < 1

Series of weak shock waves → less loss

M > 1

Unstarting

Starting

P0

P0

Should be lower Pb

Can be higher Pb



Conclusion
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• Investigate the flow in PWT
– Identifying severe total pressure loss

• Investigate starting characteristics
– Identifying

(1) Maximum operable back-pressure

(2) Starting back-pressure

(3) Hysteresis

– Necessary to consider hysteresis
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Summary



• Unsteady calculation
– Considering starting scenario

– Compare to step-by-step steady calculation

• Study “Hot” flow condition
– Temperature > 4,000 K

– Nonequilibrium effect
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Future Works



Thank you for your attention.
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