

Aerospace Engineering Seoul National University

제 56회 한국추진공학회 2021년 춘계학술대회

FGM을 적용한 저선회 연소기의 코어 막힘률에 관한 수치적 연구

정황희¹ , 이복직²⁺, 신재렬¹

1㈜넥스트폼 기술연구소, 2서울대학교 항공우주공학과

2021. 05. 28.

- Introduction
- Numerical method
- Results & discussion
- Conclusion

Introduction : Low-Swirl Combustion

- A swirler of low swirl combustion, unlike general high swirl, consists of vanes and perforated plate.
- A lifted flame is created by the combination of the core jet flow and the outer swirling stream.

Image: A. Colorado and V. McDonell, CST, Vol 189, 2017

toan

Introduction : Previous Research

• H. Jegal et al., Proc. Combust. Inst. (2020)

source CFD consulting

- LES analysis applying FGM technique to low swirl model combustor according to the swirler core blockage ratios.
 - Comparison of the <u>flow fields</u>
 - Flame structure comparison
 - <u>Emission performance</u> comparison

Numerical Method

Computational domain

Numerical Method

- Equivalence ratio: 0.65
- Outlet pressure: 1 atm
- Inlet temperature: 473 K
- Inlet mean velocity: **11.48 m/s**

Numerical Method

• FGM (Flamelet Generated Manifold)

The 56th KSPE 2021 Spring Conference

toam

source CFD consulting

Velocity contour

open source CFD consulting

Velocity profile

+0.5 d from nozzle

+1 d from nozzle

source CFD consulting

Comparison injector

Equivalence ratio = 0.65

Heat release rate

XT*t*oam

source CFD consulting

The 56th KSPE 2021 Spring Conference

Comparison of experiment and simulation

- LES results using FGM showed similarly to the experimental results at reference research.
- The flame structure is as follows:
 - ➤ HS: a general anchored flame
 - LS02: a stable lifted flame
 - LS04: a large triangular distribution flame
- CO emission: HS > LS NO emission: $HS \approx LS$

Future work

- Flame behavior near the lean flammable limit
- Flame liftoff height with inlet velocity

Thank you for your attention.

