플라즈마 풍동의 노즐-디퓨저 시스템 수치해석 및 스타팅 특성 분석

Numerical Analysis on Flow and Starting Characteristics of

Nozzle-Diffuser System of Plasma Wind Tunnel

최대산* (㈜넥스트폼, <u>wooang7031@nextfoam.co.kr</u>), 백진솔, 김규홍 (서울대학교)

· 극초음속 유동을 아음속으로 감속 → 전압력 손실 최소화, 높은 수준의 압력회복 달성

* 연구 목표

- 플라즈마 풍동 관련 연구

해석 결과 및 분석 (1)

초음속 풍동에 비해 연구가 충분하지 않고, 기존 설비들의 정보도 접근이 제한적

[4] P.W. Agostinelli et al., Investigation of hypersonic flow in the VKI H3 wind tunnel: from facility characterization to boundary-layer interaction over low-temperature

P.W. Agostinelli et al., Aerothermodynamic analyses and redesign of G.H.I.B.L.I. Plasma Wind Tunnel hypersonic diffuser, Aerosp. Sci. Technol. 87 (2019) 218-22

- (노즐) 유동 팽창 → (시험부) 고마하수 → (디퓨저) 일련의 충격파 → 종말 충격파 이후 아음속

• 주요 이슈 중 하나는 풍동의 운용 배압 예측, 언스타팅(unstarting) 문제 [4, 5]

- 연구 목표

◈ 내부 유동 특성

- 내부 유동 특성을 고려한 플라즈마 풍동 노즐-디퓨저 시스템 유동 해석
- 배압에 따른 유동 특성 관찰, 시동 특성 확인
- 추후 설계 연구 등에 활용, 기초연구

ablators, Ž3rd AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2020.

- 전반적으로 마하수는 감소, 정압력은 상승, 전압력은 급격히 소실

Mach

number

- [1] R. Savino et al., Behaviour of hypersonic wind tunnels diffusers at low Reynolds numbers, Aerosp. Sci. Technol. 3, No. 1 (1999) 11–19. [2] R.S. Pugazenthi et al., Design and performance analysis of a supersonic diffuser for plasma wind tunnel, World Acad. Sci. Eng. Technol. 5: 8-24 (2011) 1450–1455. [3] R. Monti et al., Low-Reynolds number supersonic diffuser for a plasma-heated wind tunnel, Int. J. Therm. Sci. 40, No. 9 (2001) 804-815.
 - [6] S. Srinivasan et al., Simplified curve fits for the thermodynamic properties of equilibrium air, NASA. Ref. Publ. 1181. National Aeronautics and Space Administration, Scientific and Technical Information Office, Vol 1181 (1987).
 - [7] R.N. Gupta et al., Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K, NASA. STI/Recon Tech. Rep. N 92 (1991)

8] D. W. Witte et al., 1998 Calibration of the Mach 4.7 and Mach 6 arc-heated scramjet test facility nozzles, NASA. TM-2004-213250, Langley Research Center (2004)

해석 결과 및 분석 (2)

- 이력(Hysteresis) 현상 관찰
 - 현재의 상태가 이전의 상태에 의존하는 현상 (history-dependent)
 - 스타팅 전후로 이력 현상 발생
 - 배압을 통한 압력비 → 유동의 전압력 손실 상응
 - · 초기 충격파가 삼겨지면 (스타팅 이후), 전압력 손실 측면에서 유리

Fig. 4. Static pressure at test section (x=0.5m) with different history of back-pressure applied

0 1 2 3 4 5 6 7 8 9 10 11 12

• 디퓨저의 최대 회복 가능한 압력은 디퓨저 출구에서 전압력으로 상단이 제한

• 대류항 차분 AUSMPW+, 점성항 차분 Central, TVD(minmod), LU-SGS

 $\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + H = \frac{\partial E_v}{\partial x} + \frac{\partial F_v}{\partial y} + H_v$

open source CFD consulting

2021-1 KSAS Conference

- ◈ 해석 조건
 - 해석 격자 (정렬격자, 1510 X 91): 마하 7 노즐 시험부 디퓨저 구성
 - NASA Langley 마하 6 저기조 조건 (MW 급) [8] : P0 = 28.6 bar, T0 = 2,216 K

	(c) Before PWT Starting	OW			Static Pressure	100	177	313	554	979	1732	3064	5420	9587	16959 3	30000
	(e) After PWT Starting							5	<i>A</i> #							<u></u>
	(c) Before PWT Starting				Mach Number	0.5	1.5 >	2.5	3.5 4.	5 5.5	6.5	7.5	8.5 9	.5 10.9 >	5 11.5 1:	2.5
	(e) After PWT Starting	Fig. 5. Dif	ferent pressu	re and Mac	h number dis	tribu	stion a	at ba	ack-p	ressu	ure of	5,00	0 Pa	>		÷.,
$\left(\right)$	결론 및	후속 (견구													
*	결론 - 내부 유동 - - 노즐에서 대 - 배압에 따려 후속 연구 - 프로즌 / 평	특성을 고 니퓨저 출 라 종말충 형 / 비평	려하여 노클 구에 이르기 격파 위치기 형 공기모델	즐-디퓨저 까지 유동 변화 / 스 빌에 따른 등	시스템 해석 등의 전압력 :타팅 여부 [;] 솔루션 차0	석을 은 i 가 길 분	수힝 급격 렬정도 석 / マ	병 히 : 티고 해스	소실 ., 이혁 역 시경	력 현 간 비	<mark>년상</mark> 0	이 관	찰돋	1		