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Hydrogen safety in a NPP

Hydrogen generation and release

O hydrogen is generated by oxidation of the fuel-cladding in a reactor
during a severe accident and is released with a steam into the reactor
containment.

O The released hydrogen and steam are mixed with air in the containment.

Hydrogen safety in NPPs

O NPPs are required to be safe from a thermo-mechanical load generated by
hydrogen explosion by adopting a hydrogen mitigation strategy.

Hydrogen explosion in NPPs

O Hydrogen flame propagation complies with the following combustion
regime.

Laminar flame w===p Sjow turbulent =) Fast turbulent ~===mp Detonation
deflagration deflagration I
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Hydrogen safety evaluation strategy

O Strategy for hydrogen safety evaluation
O It follows a course of hydrogen behaviors along an accident progress.
O H2 generation = distribution & combustion & FA = DDT

« FA: flame acceleration, DDT: deflagration to detonation transition
0 Methodology for hydrogen safety evaluation
O 0-D analysis
O Lumped-parameter system analysis

O 3-D analysis .
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ntainment code for hydrogen safety

%
O Hydrogen behaviors during a severe accident in an NPP containment
are strongly dependent on thermal hydraulics in the containment.

0 Important thermal and hydraulic physics in a containment

O buoyant jet flow, turbulent mixing, gas species diffusion by concentration
gradients, steam condensation, thermal radiation, structure heat transfer,
condensed/sprayed droplet flow, combustion of hydrogen, and et al.

O Active or passive devices installed in a containment in order to
control a containment atmosphere must also be modeled.

O PAR, igniter, fan/cooler and passive heat removal system

0 Implementation of all the models in a single code makes it
complicated and heavy to run for long-term accident scenarios.
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Development of OpenFOAM-based
containment analysis code

d Modularized development of a containment analysis code

O Modularization of an analysis code is a commonly used technology to
keep the code manageable.

0 An analysis tool for hydrogen behavior in a containment is under
development based on the OpenFOAM library which supplies
modularized numerical and physical models by using classes and

namespaces
Turbulence Time-averaged [ Volume-averaged )
m Od U|e (quasi-steady) (transient)

Phasic module Condensation [ spray ] [ aerosol

Combustion ‘ [ . S
module Turbulent combustion detonation

Heat structure
module
Component
module
Flow solver
module

Thin wall conduction Radiation HT Thick wall conduction

PAR igniter [ Fan ][ Cooler ]

capturing solver drift-flux solver two-fluid solver

Buoyant solver [ Euler shock- ][ Two-phase ][ Two-phase ]
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% giC al and physical models for detonation simulation

2 = 2, 7

d Governing equations and models for a hydrogen detonation
analysis
Q Compressible Euler equations without diffusion fluxes

Q detonation shock capturing by central upwind scheme of Kurganov-Tadmore
Q 7-step chemical reaction of Shang et al.
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1-D shock tube problem

O Simulation of a shock tube problem

O Calculation of shock tube to 7 ms with 100 and 400 grid points
O Data comparison using 1st order Roe, 2nd order Upwind TVD, OpenFOAM,

exact solution
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e« : - Simulation of blast wave problem

O Simulation of the blast experiment by Schmidt and Duffy
O Computational domain is 2-D axisymmetric.
O Mesh is composed of 26,800 hexahedral cells.
O Shock tube inlet has fixed total pressure and temperature BCs

\(1zu° I*Qo*'

Schematic of T 0 Mesh for
shock tube 07430 155 simulation
experiment ) oot -

j 'l l . .
Time: 0.0e+00 | Time: 0.0e+00
Velocity Pressure
fields from field from
simulation : simulation
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Comparlson of overpressures along time
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. Simulation of spherical balloon test

O Spherical detonation experiment
O Hydrogen-air detonation experiments in hemispherical balloons were

performed at Fraunhofer Institute.
O 29vol% hydrogen-air in 2.95m balloon 'E &
O Mixture was ignited centrally with 50 g of ==
o | 4B |
RPN
P

high explosive

1bar, 304K
29.05% H,

R

e

O Simulation geometry: a quarter of the hydrogen balloon, number of cells:

O Simulation of the spherical balloon test

731,190
Q Initiation of detonation
» blast pressure from Sadovsky equation

m1/3> m1/3l ml/3

Apmy = [1.02 + <4.36 + 14 " [bar]
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d Simulation results of the spherical balloon test

O Comparison of results from OpenFOAM
and experiments
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\:':{f':"'vj,imu'lgfion of RUT detonation experiment

d Simulation of the KI-RUT-HYDO09 test
O detonation initiation by 200g of TNT

- spherical shock with radius of 0.65 m and pressure of 15.85 bar was set

O Internal structure neglected
O Mesh is composed of hexahedral cells of 2,211,900

0 Propagation of shock waves

O In the simulation result, shock waves interact very complicatedly

Time: 0.0000 s
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ulatibn of RUT detonation experiment (2)

vy T
(J Pressure variations for KI RUT-HYDO09

QO The arrival time of the leading shock at the point 11 in the simulation was
shifted in order to synchronize the pressure-time histories between the
experimental and numerical data
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=+J« - Detonation in a generic containment

[ Generic containment

QO Virtual containment for an evaluation of detonation in a dome region

O Basic shape is hemi-spherical dome on a cylinder similar to domestic LWR
(light water reactor) containments

O Internal structure is simplified

Height 79 m
Diameter 46 m
Free volume 05,400 m3
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£+’ - Detonation in a generic containment (2)

N R
d Hydrogen distribution
O In dome region hydrogen concentration of 20 vol% (Xair:Xh2 = 0.8:0.2)
 Detonation initiation by 200g of TNT

1 Study on detonation shock propagation dependent on
initial detonation locations

Time: 0.0000 s

Time: 0.0000s Time: 0.0000 s
Casel: Qase2: Cqse3:
top point 5|d.e m|FIdIe
initiation P‘?'T‘t : P?'T‘t .
Initiation Initiation

]
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£+« - Detonation in a generic containment (3)

s ?, -
d Simulation results for detonation propagation

O Detonation shock propagations for three test cases

O As can be expected, the structure of the detonation shock and its
propagation is dependent on the initiation location.

Time: 0.0000 s

Time: 0.0000 s Time: 0.0000 s
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Detonation in a generic plant (4)

(d Pressure load on the dome wall

O Pressure-time histories for the case3
O The pressure magnitude is doubled at point 13 because of a reflected shock.
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(d Detonation phenomena accompanying chemical reactions have
been simulated with an OpenFOAM solver with a reduced 7-step

chemistry model.

d It was found out that the OpenFOAM solver can resolve
complicated shock structures well. The OpenFOAM solver gives
similar performance to 2nd order upwind TVD scheme.

O As a future work it is considered to develop a methodology to
evaluate structure integrity by coupling detonation analysis code
and structural analysis code
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