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Hydrogen safety in a NPP
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 Hydrogen generation and release

 hydrogen is generated by oxidation of the fuel-cladding in a reactor 
during a severe accident and is released with a steam into the reactor 
containment.

 The released hydrogen and steam are mixed with air in the containment.

 Hydrogen safety in NPPs

 NPPs are required to be safe from a thermo-mechanical load generated by 
hydrogen explosion by adopting a hydrogen mitigation strategy. 

 Hydrogen explosion in NPPs

 Hydrogen flame propagation complies with the following combustion 
regime.

Laminar flame Slow turbulent 
deflagration

Fast turbulent 
deflagration

Detonation

DDT
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Hydrogen safety evaluation strategy
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 Strategy for hydrogen safety evaluation

 It follows a course of hydrogen behaviors along an accident progress.

 H2 generation  distribution  combustion  FA  DDT 

• FA: flame acceleration, DDT: deflagration to detonation transition

 Methodology for hydrogen safety evaluation

 0-D analysis

 Lumped-parameter system analysis

 3-D analysis



2018 7th OpenFOAM Korea User’s Community Conference 

Containment code for hydrogen safety 
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 Hydrogen behaviors during a severe accident in an NPP containment 
are strongly dependent on thermal hydraulics in the containment.

 Important thermal and hydraulic physics in a containment

 buoyant jet flow, turbulent mixing, gas species diffusion by concentration 
gradients, steam condensation, thermal radiation, structure heat transfer, 
condensed/sprayed droplet flow, combustion of hydrogen, and et al. 

 Active or passive devices installed in a containment in order to 
control a containment atmosphere must also be modeled. 

 PAR, igniter, fan/cooler and passive heat removal system

 Implementation of all the models in a single code makes it 
complicated and heavy to run for long-term accident scenarios.
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Development of OpenFOAM-based 
containment analysis code 
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 Modularized development of a containment analysis code

 Modularization of an analysis code is a commonly used technology to 
keep the code manageable.

 An analysis tool for hydrogen behavior in a containment is under 
development based on the OpenFOAM library which supplies 
modularized numerical and physical models by using classes and 
namespaces
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Numerical and physical models for detonation simulation
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 Governing equations and models for a hydrogen detonation 

analysis 

 Compressible Euler equations without diffusion fluxes

 detonation shock capturing by central upwind scheme of Kurganov-Tadmore

 7-step chemical reaction of Shang et al.
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 Simulation of a shock tube problem

 Calculation of shock tube to 7 ms with 100 and 400 grid points 

 Data comparison using 1st order Roe, 2nd order Upwind TVD, OpenFOAM, 
exact solution

1-D shock tube problem

by 100 cells 

by 400 cells 

< Pressure (left),                          density (middle),                          velocity (right)  >
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 Simulation of the blast experiment by Schmidt and Duffy

 Computational domain is 2-D axisymmetric.

 Mesh is composed of 26,800 hexahedral cells.

 Shock tube inlet has fixed total pressure and temperature BCs

9

Simulation of blast wave problem

Schematic of 

shock tube 

experiment

Mesh for 

simulation

Velocity 

fields from 

simulation

Pressure 

field from 

simulation
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Comparison of overpressures along time 
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 Spherical detonation experiment 

 Hydrogen-air detonation experiments in hemispherical balloons were 
performed at Fraunhofer Institute.

 29vol% hydrogen-air in 2.95m balloon

 Mixture was ignited centrally with 50 g of 

high explosive 

 Simulation of the spherical balloon test

 Simulation geometry: a quarter of the hydrogen balloon, number of cells: 
731,190 

 Initiation of detonation

 blast pressure from Sadovsky equation

Simulation of spherical balloon test

∆pm = 1.02 + 4.36 + 14
𝑚1/3

𝑟

𝑚1/3

𝑟

𝑚1/3

𝑟
[bar]
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 Simulation results of the spherical balloon test

 Comparison of results from OpenFOAM

and experiments

12

Simulation of spherical balloon test

Inside 
balloon

Outside 
balloon
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 Simulation of the KI-RUT-HYD09 test

 detonation initiation by 200g of TNT

- spherical shock with radius of 0.65 m and pressure of 15.85 bar was set 

 Internal structure neglected

 Mesh is composed of hexahedral cells of 2,211,900

 Propagation of shock waves

 In the simulation result, shock waves interact very complicatedly 

Simulation of RUT detonation experiment
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 Pressure variations for KI_RUT-HYD09 

 The arrival time of the leading shock at the point 11 in the simulation was 
shifted in order to synchronize the pressure-time histories between the 
experimental and numerical data

Simulation of RUT detonation experiment (2)
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At measuring point 7
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At measuring point 10
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 Generic containment 

 Virtual containment for an evaluation of detonation in a dome region

 Basic shape is hemi-spherical dome on a cylinder similar to domestic LWR 
(light water reactor) containments

 Internal structure is simplified

Detonation in a generic containment

Height 79 m

Diameter 46 m

Free volume 95,400 m3
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 Hydrogen distribution  

 In dome region hydrogen concentration of 20 vol% (Xair:Xh2 = 0.8:0.2)

 Detonation initiation by 200g of TNT

 Study on detonation shock propagation dependent on 
initial detonation locations

Detonation in a generic containment (2)

Case1: 
top point
initiation

Case2: 
side 
point
initiation

Case3: 
middle 
point
initiation
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 Simulation results for detonation propagation  

 Detonation shock propagations for three test cases  

 As can be expected, the structure of the detonation shock and its 
propagation is dependent on the initiation location.

Detonation in a generic containment (3)
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 Pressure load on the dome wall  

 Pressure-time histories for the case3

 The pressure magnitude is doubled at point 13 because of a reflected shock.

Detonation in a generic plant (4)

Case3
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 Detonation phenomena accompanying chemical reactions have 
been simulated with an OpenFOAM solver with a reduced 7-step 
chemistry model.

 It was found out that the OpenFOAM solver can resolve 
complicated shock structures well. The OpenFOAM solver gives 
similar performance to 2nd order upwind TVD scheme.

 As a future work it is considered to develop a methodology to 
evaluate structure integrity by coupling detonation analysis code 
and structural analysis code

Summary and future plan


