

Turbulent Inflow Profile for Numerical Wind Tunnel

Ph.D. Jae-Ryul Shin Research & Development Center NEXTfoam CO., LTD.

R&D Center. NEXTfoam CO., LTD.

- Wind Tunnel Test
 - Measurement of Hotwire
 - Expose Category
 - Characteristic of Velocity with expose
- Synthetic Inflow
 - Wind Profile Code for Architecture
 - Inflow Generation
 - Computational Results
- Remark

Why Numerical Wind Tunnel?

- Wind Tunnel Test and Code (KBC 2009)
 - Subject of wind tunnel test

[Wind vibration

architecture (AR

over 3.5)]

[Unique roof and cladding]

[Valley wind effect]

[Adjacent effect architecture (within 10D of architecture)]

[Unique design (difficult to apply code)]

- Korean building code (KBC 2009/2013)

Limitation of experiment and Real problem

- Daewoo E&C Facility Summary
 - Wind Tunnel Specification
 - Closed-circuit wind tunnel
 - Test section: 3m×2m
 - Max wind speed: 30m/s
 - Turbulent Intensity: 0.5%

Inside of Wind Tunnel

[Wind Tunnel Components]

- Measurement Specification
 - Multi-channel pressure array module
 - Red Hawk Ltd. 512 channel
 - 16bit ADC
 - Sampling rate: 400Hz

[Measurement Deck]

Measurement Layout

[Upper Traverse Rod & Pitot]

[Upper Traverse Rod & Pitot]

- Hotwire probe
 - Kanomax Inc. Model 0252R-T5, x-type
 - Resistance: 5.74Ω, Temp.: 150°C
- Measurement
 - 10cm interval from floor to 1m
 - Sampling rate 400Hz, during 60sec
 - Measure hotwire and pitot signals

[Hotwire]

- Hotwire Correction
 - Pitot conversion wind speed
 - $U_{pitot} = 4\sqrt{pitot \times 10} \text{ [m/s]}$

[Hotwire-pitot signal correction]

12

 $0.0679x^2 - 0.3854x + 0.5842$ $R^2 = 0.9974$

5

4

 $y = 0.3171x^2 - 0.3153x + 1.0811$ $R^2 = 1$ 6

2

0

1

2

3

4

5

RPM	ch1	ch2	Pitot	Pitot U
100	2.58929	2.565859	0.034625	2.353714
200	3.949537	3.923866	0.140403	4.739667
300	4.948932	4.931013	0.32777	7.241768
400	5.776872	5.756702	0.593191	9.742208
500	6.472368	6.458335	0.943504	12.28661

Ch1-pitot signal $y = 0.0684x^2 - 0.3917x + 0.5981; R^2 = 0.9973$

Ch2-pitot signal

 $y = 0.0679x^2 - 0.3854x + 0.5842; R^2 = 0.9974$

Ch1-pitot wind speed $y_{ch1} = 0.3206x^2 - 0.3535x + 1.125; R^2 = 1$

Ch2-pitot wind speed $y_{ch2} = 0.3171x^2 - 0.3153x + 1.0811; R^2 = 1$

Velocity component $u = \frac{1}{2}(y_{ch1} + y_{ch2}), w = \frac{1}{2}(y_{ch1} - y_{ch2})$

R&D Center. NEXTfoam CO., LTD.

• Expose A

[Expose A Block Layout]

To close large high rise building over 10 stories at central urban area

Wind speed Avg. : 9.159 m/s at 1m RMS_{avg} : 1.089 m/s Max_{avg} : 11.193 m/s Min_{avg} : 3.316 m/s

• Expose B

[Expose B Block Layout]

To close 3.5m height singlefamily dwelling area To scatter medium rise building area

Wind speed Avg. : 9.402 m/s at 1m RMS_{avg} : 1.195 m/s Max_{avg} : 10.965 m/s Min_{avg} : 2.744 m/s

• Expose C

[Expose C Block Layout]

To scatter 1.5~10m height obstacle area To scatter low rise building area

Wind speed Avg. : 9.385 m/s at 1m RMS_{avg} : 1.077 m/s Max_{avg} : 11.266 m/s Min_{avg} : 3.356 m/s

• Expose D

[Expose D Block Layout]

Unobstacle areas and water surface, grassland, airport Average height 1.5m below Obstacle area

Wind speed Avg. : 9.283 m/s at 1m RMS_{avg} : 0.905 m/s Max_{avg} : 11.404 m/s Min_{avg} : 4.240 m/s

- Wind Tunnel Test
 - KBC 2009 expose categories tested

	Velocity [m/s]			
Expose	Α	В	С	D
Avg. at 1m	9.159	9.402	9.385	9.283
RMS	1.089	1.195	1.077	0.905
Umax	11.193	10.965	11.266	11.404
Umin	3.316	2.744	3.356	4.240

- W-direction velocity
 - 25% of average velocity
- Building pressure test
 - 75×75×300 mm
 - Two types of contemporary apartment
 - Test bad model

- Velocity and Turbulence
 - KBC2009 flow profile and AIJ guidebook(2007)
 - Y. Tominaga, A. Mochida, R. Yoshie, H. Kataoka, T. Nozu, M. Yoshikawa, T. Shirasawa, "AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 96. pp. 1749–1761, 2008

•
$$U(z) = U_{ref} \left(\frac{z}{z_{ref}}\right)^{\alpha}$$

•
$$I_u(z) = 0.1 \left(\frac{z}{z_g}\right)^{-\alpha - 0.05}$$
, $I_u = \frac{u^4}{\overline{u}}$

- $k(z) = (I_u(z)U(z))^2$
- $\epsilon(z) = \sqrt{C_{\mu}}k(z)\frac{U_{ref}}{z_{ref}}\alpha\left(\frac{z}{z_{ref}}\right)^{(\alpha-1)}$
- Fluctuation part
 - Characteristics of atmospheric turbulence near the ground part II: single point data for strong winds (neutral atmosphere), ESDU 85020, ISSN 0143-2702, 2001

•
$$\frac{\sigma_v}{\sigma_u} = 1 - 0.22 \cos^4\left(\frac{\pi}{2} \frac{z}{z_{ref}}\right)$$

• $\frac{\sigma_w}{\sigma_u} = 1 - 0.45 \cos^4\left(\frac{\pi}{2}\frac{z}{z_{ref}}\right)$

•
$$\sigma_v = 0.5\sigma_u$$
, $\sigma_w = 0.35\sigma_u$

- Inflow Condition Generation Methods
 - LES, pre-cursor DNS for channel flow
 - Limited low Reynolds, difficult rescale DNS fluctuation in high Reynolds
 - Re-scale method
 - Use downward resolved fluctuation for inlet condition with rescale
 - Vortex method
 - Partially synthetic fluctuation
 - Eddy is defined geometrical function
- Inlet Inflow in OpenFOAM
 - $\ src/turbulent Models/incompressible/RAS/derived FvPatch$
 - Logarithm velocity profile
 - atmBoundaryLayer
 - atmBoundaryLayerInletEpsilon
 - atmBoundaryLayerInletK
 - atmBoundaryLayerInletVelocity

- GroovyBC
 - Swak4foam
 - Easy to implement on BC

ABLvariables ("Uref=9.159;"				
"Href=1.0;"				
"alpha=0.23;"				
"flucx=1.0;"				
"flucy=0.5;"				
"flucz=0.35;"				
"Ux=Uref*pow((pos().z/Href),alpha);"				
"T1=0.1*pow((pos().z/Href),-alpha-0.05);"				
"UX=TLUCX*UX*I1;"				
"uy=Tlucy*ux;"				
uz=llucz≁ux; "UbeQ DE¥flucz≭Uze"				
Uy=0.25*TCUCX*UX;				
"Iff v=liv+randNormal()#uv+"				
"Iff v=(Iv+uv)*randNormal():"				
"LH z=(Uz+uz)*randNormal():"				
):				
ABLTkvariables ("Uref=9.159;"				
"Href=1.0;"				
"alpha=0.23;"				
"flucx=1.0;"				
"Ux=Uref*pow((pos().z/Href),alpha);"				
"Ti=0.1*pow((pos().z/Href),-alpha-0.05);"				
"ux=flucx*Ux*T1;"				
"Ut x=Ux+randNormal()*ux;"				
"Ik=pow((Utx*11),2);"				
API Teveniehler / "Unof-0, 150,"				
"Head-1 0."				
"al pha=0, 23; "				
"flucx=1.0:"				
"Cmu=0.0845:"				
"Ux=Uref*pow((pos().z/Href).alpha):"				
"Ti=0.1*pow((pos().z/Href),-alpha-0.05);"				
"ux=flucx*Ux*Ti;"				
"Ut x=Ux+randNormal()*ux;"				
"Tk=pow((Utx*Ti),2);"				
"Prefac=sort(Cmu)*Tk*Uref/Href*alpha:"				
the same and set events the entropy of events				
"Te=Prefac*pow((pos().z/Href),alpha-1.0);"				

Power law velocity profile $U(z) = U_{ref} \left(\frac{z}{z_{ref}}\right)^{\alpha}$

Turbulent intensity profile $I_u(z) = 0.1 \left(\frac{z}{z_g}\right)^{-\alpha - 0.05}$ Fluctuation part $\sigma_v = 0.5\sigma_u, \sigma_w = 0.35\sigma_u$

```
Turbulent kinetic energy profile

k(z) = (I_u(z)U(z))^2
```

Turbulent dissipation profile

$$\epsilon(z) = \sqrt{C_{\mu}}k(z)\frac{U_{ref}}{Z_{ref}}\alpha\left(\frac{z}{Z_{ref}}\right)^{(\alpha-1)}$$

[Inlet Condition]

- Surface Roughness
 - Expose Categories A, B, C, D
 - Need to correct different roughness height
 - O.Kruger, C.Schrodinger, A.Lengwinant, and C.O.Paschereit, "Numerical Modeling and Validation of the wind flow over the lake wannsee," 11th world congress on computational mechanics, Barcelona, Spain, 2014.
 - B.Blocken, T.Stathopoulos, and J.Carmeliet, "CFD simulation of the atmospheric boundary layer: wall function problems, atmospheric environment, vol. 41, No. 2, pp. 238-252, 2007.
 - Recommended value
 - » $C_s = 0.327$
 - » $K_s = 30z_0$
 - » *E* = 9.793

- nutKRoughWallFunction

•
$$\frac{u_p}{u^*} = \frac{1}{\kappa} \ln\left(\frac{Ez_p}{C_s k_s}\right), u^* = C_{\mu}^{1/4} k^{1/2}$$

Expose	Α	В	С	D
Cs	0.6	0.5	0.4	0.3
Ks(=30z0)	0.04125	0.05646	0.006723	0.00028125
E	9.793			

[Tuned Values of Roughness Constant from wind tunnel test]

- Computational Setup
 - Wind tunnel modeling
 - Geometry: Salome
 - Length: -3~2m (=5m)
 - Width: -2~2m (=4m)
 - Height: 2m

- Mesh generator: cfMesh
 - maxCellSize: 0.08m (probe location each 0.1m in wind tunnel test)
 - Boundary layer 11 on bottom
 - Target y+: 100 (=0.005m)

[Mesh Configuration]

- Computational Setup
 - Boundary Condition
 - Inlet: turbulent velocity inlet (groovyBC)
 - Outlet: extrapolation (zeroGradient)
 - Bottom: non-slip wall
 - Top: symmetry
 - Front and Back: extrapolation (zeroGradient)

	Expose	Α	В	С	D
	Velocity	9.159	9.402	9.385	9.283
	Pressure	0	0	0	0
	Turb. K	1.258	1.326	1.321	1.293
	Turb. e	0.116	0.125	0.124	0.121
	NuTilda	0.116	0.125	0.124	0.121
	R	1.445	1.483	1.481	1.465
		1.161	1.192	1.189	1.177
		0.755	0.776	0.774	0.766

Turbulent kinetic energy $K = 1.5(IU)^2$

Turbulent dissipation $\epsilon = C_{\mu} 0.75 \frac{K^{1.5}}{L}$, L=2m (turntable size)

Reynolds stress tensor $R_x = 2.39u^*, R_y = 1.92u^*, R_z = 1.25u^*$ $u^* = C_\mu^{0.25} K^{0.5}$

• Expose C Flow Field

[Inlet Velocity Vector, Expose C, k-e model, steady]

[Inlet Velocity Vector, Expose C, k-e model, unsteady]

• Expose C Flow Field

[Inlet Velocity Vector, Expose C, RSTM model, unsteady]

[Inlet Velocity Vector, Expose C, LES Smagorinsky model, unsteady]

[Expose C, RSTM model, unsteady]

• Expose A

- Turntable inlet located 2m from Inlet BC
 - Two equation k-e families is similar to experiment data
 - One equation SA is not good agreement near wall
 - LES results show good agreement of KBC 2009 expose A

R&D Center. NEXTfoam CO., LTD.

• Expose B

- Turntable inlet located 2m from Inlet BC
 - Two equation k-e families is similar to experiment data
 - One equation SA is not good agreement near wall
 - LES results show good agreement of KBC 2009 expose B and Exp

R&D Center. NEXTfoam CO., LTD.

• Expose C

- Turntable inlet located 2m from Inlet BC
 - One equation SA is similar to experiment data near wall
 - Two equation k-e and LES results between Exp. and KBC 2009 expose C

• Expose D

- Turntable inlet located 2m from Inlet BC
 - One equation SA is similar to experiment data near wall
 - Two equation k-e is more stiff gradient near wall
 - All models follow a KBC 2009 expose D profile

- Inlet conditions
 - Korean Building Code 2009
 - Fluctuation part of velocity profile at inlet
 - Randomized velocity with space
- From the results of simulation with turbulent model
 - All most models are good agreement to KBC 2009 and Exp.
 - Fluctuation characteristic of flow field
 - LES
 - » Velocity components do not decay in simulation field
 - RANS
 - » Inlet velocity fluctuation is rapidly decay
 - » Downward flow is similar to steady flow result
- Next works
 - Pressure test on the structure
 - 75 cube (wind tunnel validation case)
 - Two types of apartment pressure test with exp.

[Bluff Body Exp. and CFD]

Thank you for your attention