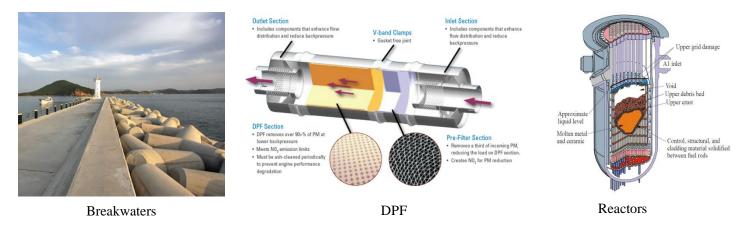


Flow Analysis of Porous Structure Using OpenFOAM

Jae-Ryul Shin, Byoung-Yun Kim Research & Development Center NEXTfoam CO., LTD.

R&D Center. NEXTfoam CO., LTD.

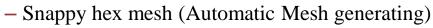


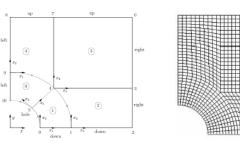
- Introduction
 - Objective
 - OpenFOAM
- Flow Dynamic Modeling
 - Governing Equations
 - Solution Method
- Computational Result
 - Porous Dam Break 2D / 3D
- Summary and Remark

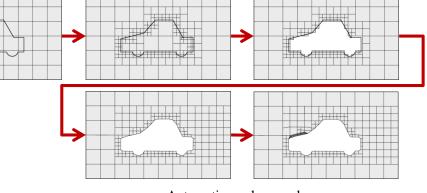
- Motivation
 - Multiphase or multi-fluid flow with porous media in engineering fields

- Objectives
 - Validation of precompiled OpenFOAM solver
 - Minimum functions solve a flow field
 - Find out problems and modifying functions to appropriate solution

Introduction


- OpenFOAM
 - Open Field Operation and Manipulation
 - Open source CFD toolbox written in C++
 - Freely available and open source
 - Licensed under the GNU General Public License
 - Homepage: http://www.openfoam.org
- Solver
 - Over 80 solvers
 - Over 170 applications
- Library
 - Turbulence, Thermophysical, Chemistry
- Mesh
 - Mesh Generator, Converting
- Core Tech.
 - Numerical Method
 - Dynamic Mesh, Parallel Computing


R&D Center. NEXTfoam CO., LTD.


- Pre-processing (Mesh generating: blockMesh, snappyHexMesh, mesh converting)
- Setup Boundary Condition, choose PDE solver, Run
- Post-processing (Visualization: paraview)
- Pre-processing
 - Block mesh
 - Vertex / Edge / Face
 - Block

- Create base mesh
- Refine base mesh
- Remove unused cells
- Snap mesh to surface
- Add layers
- Mesh converting to Foam
 - Ansys, CFX, Fluent, gambit, plot3D, etc

Block mesh

Automatic mesh procedure

Flow Dynamic Modeling

- Governing Equations
 - Navier-Stokes Equation
 - Continuity

$$\frac{\partial \, \boldsymbol{u}_{_{i}}}{\partial \, \boldsymbol{x}_{_{i}}} = \boldsymbol{0}$$

• Momentum

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_j u_i) = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j}(2\mu S_{ij}) + B_i$$

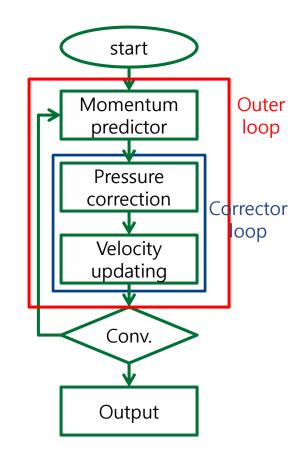
• Volume of Fraction

$$\frac{\partial \alpha}{\partial t} + \frac{\partial}{\partial x_{_{j}}}(\alpha u_{_{j}}) = 0$$

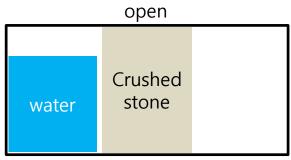
$$S_{ij} = \frac{1}{2} \Biggl(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Biggr)$$

- Body Force = porous drag (Darcy-Forchheimer) + gravity $B_{i} = -\left[\mu D_{ij} + \frac{1}{2}\rho \mid u \mid F_{ij}\right]u_{i} - \rho g_{i}$
- Ergun

$$D = \frac{150(1-\Phi)^2}{d_p^2 \Phi^3} \quad F = \frac{1.75(1-\Phi)}{d_p \Phi^3}$$


- Turbulence Model
 - Two equation model: $k-\omega$ SST model

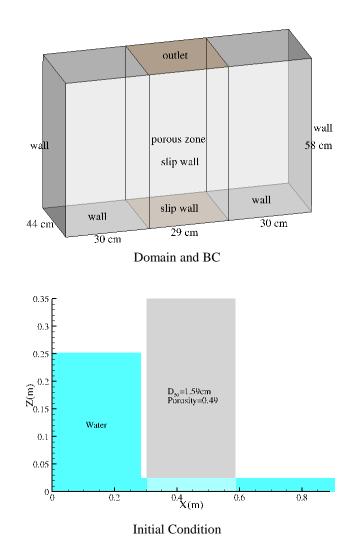
$$\begin{split} & \frac{\partial}{\partial t}(\rho k) + \frac{\partial}{\partial x_j}(\rho u_j k) = \frac{\partial}{\partial x_j} \bigg[(\mu + \sigma_{k1} \mu_i) \frac{\partial k}{\partial x_j} \bigg] + P_k - \beta^* \rho k \omega \\ & \frac{\partial}{\partial t}(\rho \omega) + \frac{\partial}{\partial x_j}(\rho u_j \omega) = \frac{\partial}{\partial x_j} \bigg[(\mu + \sigma_{\omega 1} \mu_i) \frac{\partial \omega}{\partial x_j} \bigg] + \alpha_1 \frac{\omega}{k} P_k - \beta_1 \rho \omega^2 \end{split}$$


Flow Dynamic Modeling

- Time Integration
 - Backward Euler
 - Crank-Nicholson
- Spatial Discretization
 - Second / Fourth order central difference: linear / cubic
 - First / Second order upwind: upwind / linearUpwind
- Matrix Solver
 - Iterative Method (e.g. Gauss-Seidel): smoothSolver
 - Preconditioned (bi-)conjugate gradient methods: PCG, PBiCG
 - Geometric and algebraic multigrid: GAMG
- Solution Algorithm
 - SIMPLE
 - PISO
 - PIMPLE

- Experiment of porous dam break (Lin, p., 1998)
 - Porous dam in fish tank
 - Two type of granular materials: crushed stone, glass beads

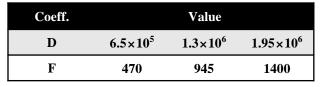
Experiment schematic view

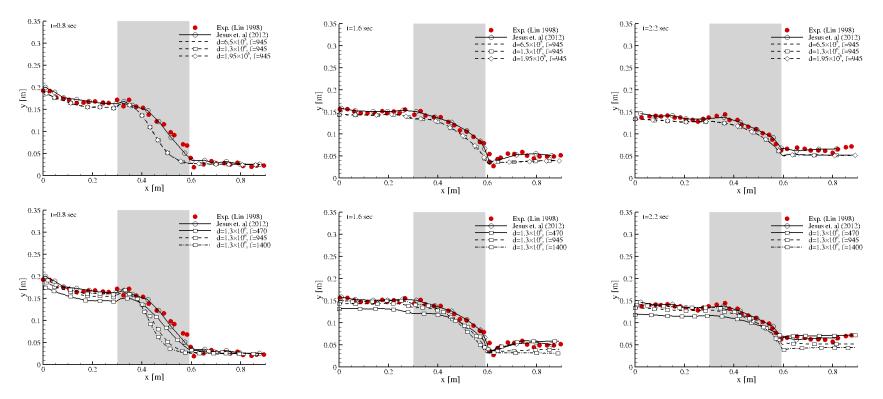

Material	Φ	d _p [cm]
Crushed stone	0.49	1.59
Glass beads	0.39	0.3

Porous media property

- Benchmark test
 - Darcy-Forchheimer Coefficients
 - 2D simulation
 - $-k-\omega$ SST turbulence model
 - 2D simulation
 - Grid dependency
 - 3D simulation

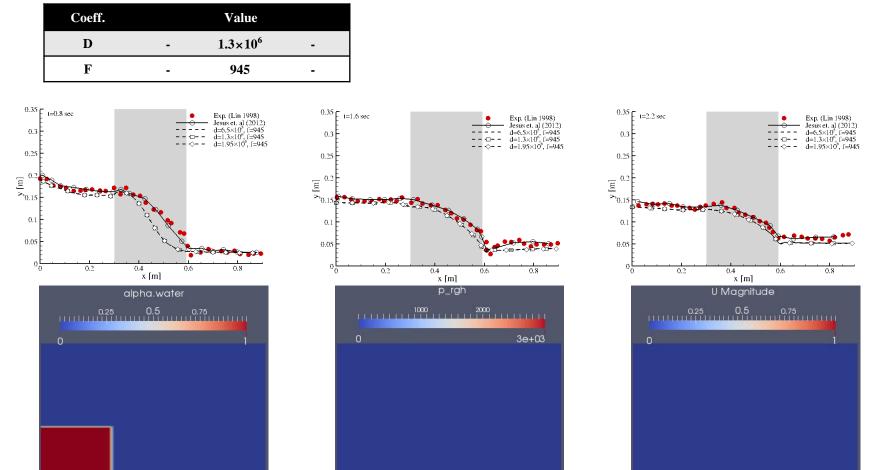
- 2D computational Set up
 - Domain Size: 89cm×58cm
 - Cell size: 1cm×0.5cm
 - Total cell No.: 10,324
- 3D computational Set up
 - Domain Size: 89cm×58cm×44cm
 - Cell size
 - Coarse: 1cm×0.5cm×1cm
 - Fine: 0.5cm×0.25cm×0.5cm
 - Total cell No.
 - Coarse: 454,256
 - Fine: 3,634,048
- Boundary and initial condition
 - Wall: non-slip, slip
 - Outlet: extrapolation
 - Initial water height: 25cm




R&D Center. NEXTfoam CO., LTD.

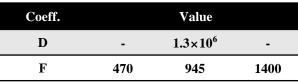
• Dependency of Darcy-Forchheimer Coefficients

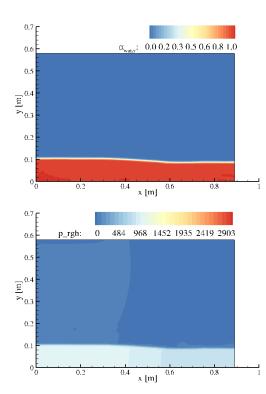
- Comparison coefficients

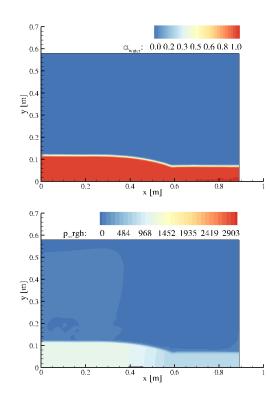


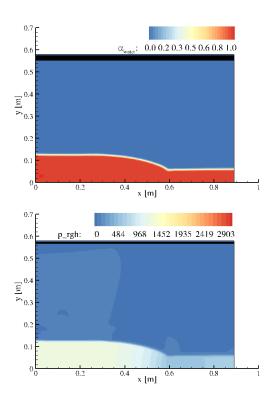
• Dependency of Darcy-Forchheimer Coefficients

- Comparison coefficients

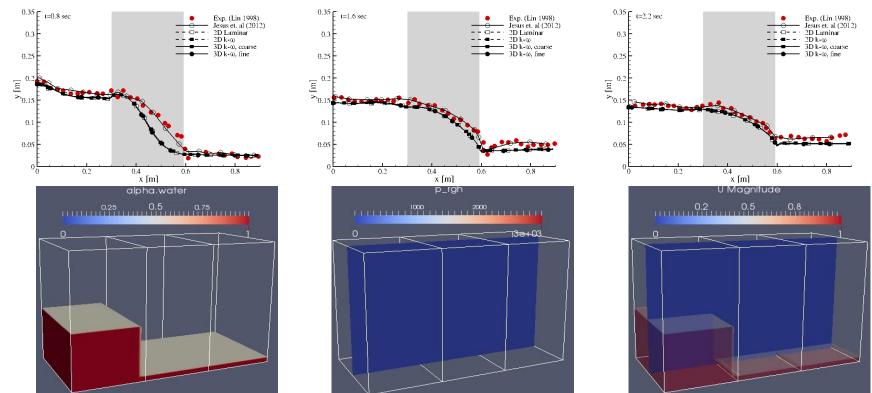



R&D Center. NEXTfoam CO., LTD.




• Dependency of Darcy-Forchheimer Coefficients

- Comparison coefficients



- Grid dependency and turbulence effect
 - Coarse: 1cm×0.5cm×1cm, Fine: 0.5cm×0.25cm×0.5cm, k- ω SST model

- Turbulence dose not affect the flow field
- Need to consider porosity in turbulence model
- Same result of grid dependency (may BC)

R&D Center. NEXTfoam CO., LTD.

The 8th National Congress on Fluids Engineering, Buyeo, Aug. 29th, 2014. No.12

- OpenFOAM
 - Used one of precompiled solvers, called porousInterFoam
 - Pressure drop is considered only, as body force without other details
 - But it shows good performance
- Darcy-Forchheimer Coefficients
 - Guess D and F coefficient from fixed porosity and nominal diameter with Ergun equation
 - The result shows very similar behavior of motion
 - But real is not homogenous porous media
 - Need new approach, guessing D and F coefficients. e.g. Gaussian distribution.
- Grid and turbulence
 - Grid dependency
 - Both 2D and 3D are applied same BC (slip wall on sides)
 - Turbulence model dose not affect the flow field
 - Initial distribution of flow field
 - Need test other turbulence models. e.g. k-ε.

Thank you for your attention

R&D Center. NEXTfoam CO., LTD.