

Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

JaeHeung Gill¹, ByoungYun Kim¹, JiHong Kim², HoonBum Shin², SungKi Jung² and KyuHong Kim³

^INEXTFoam Co., Ltd.

² Korea Aerospace Indutries, LTD.

³ Seoul National University

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

3

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

4

Background

Based on DensityBasedTurbo by Oliver Borm

- Density Based Coupled Algorithm
- Explicit Time Integration
- Godunov Type Flux Schemes
- Multi-Dimensional Slope Limiter
- Local Time Stepping
- Steady & Transient Solvers
- We have focused on steady state solver
 - Implementation of implicit time integration
 - Implementation of far-field boundary condition
 - Utilizing riemann invariants

nenFOAM® Workshop

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

Favre-Averaged Navier-Stokes Equations in Integral Form

$$\int_{V} \frac{\partial \vec{W}}{\partial t} dV + \oint_{S} \left(\vec{F}_{c} - \vec{F}_{v} \right) dS = 0$$

7

Spatial Discretization

$$V_{i} \frac{\partial \vec{W}_{i}}{\partial t} + \sum_{j \in N(i)} \left(\vec{F}_{c,ij} - \vec{F}_{v,ij} \right) S_{ij} = 0$$

8

Time Integration

Explicit -

nternational

$$\frac{V_i}{\Delta t_i} \left(\vec{W}_i^{n+1} - \vec{W}_i^n \right) + \sum_{j \in N(i)} \left(\vec{F}_{c,ij}^n - \vec{F}_{v,ij}^n \right) S_{ij} = 0$$

Implicit (Backward Euler) —

$$\frac{V_{i}}{\Delta t_{i}} \left(\vec{W}_{i}^{n+1} - \vec{W}_{i}^{n} \right) + \sum_{j \in N(i)} \left(\vec{F}_{c,ij}^{n+1} - \vec{F}_{v,ij}^{n+1} \right) S_{ij} = 0$$

Linearizing Flux Vector

- Linearizing both convective and viscous fluxes using Taylor's series expansion.

$$\vec{F}_{ij}^{n+1} \approx \vec{F}_{ij}^{n} + \left(\frac{\partial \vec{F}}{\partial \vec{W}}\right)_{ij} \Delta \vec{W}_{ij}^{n}$$

Result in

$$\frac{V_i}{\Delta t_i} \Delta \vec{W}_i^n + \sum_{j \in N(i)} \left(A_{c,ij} - A_{v,ij} \right) \Delta \vec{W}_{ij}^n S_{ij} = -Res_i^n$$

where

$$\Delta \vec{W}_{i}^{n} = \vec{W}_{i}^{n+1} - \vec{W}_{i}^{n}$$

$$A_{c} = \frac{\partial \vec{F}_{c}}{\partial \vec{W}} : Convective Flux Jacobian$$

$$A_{v} = \frac{\partial \vec{F}_{v}}{\partial \vec{W}} : Viscous Flux Jacobian$$

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

- Evaluation of Flux Jacobian
 - Steger-Warming's Flux Vector Splitting for Convective Flux
 - Thin Shear Layer Approximation(TSL) for Viscous Flux

$$\frac{V_{i}}{\Delta t_{i}}\Delta \vec{W}_{i}^{n} + \sum_{j \in N(i)} \left(A_{c,i}^{+} + A_{v,i}^{*}\right)\Delta \vec{W}_{i}^{n}S_{ij}$$
$$+ \sum_{j \in N(i)} \left(A_{c,j}^{-} - A_{v,j}^{*}\right)\Delta \vec{W}_{j}^{n}S_{ij} = -Res_{i}^{n}$$

Split off-diagonal term into lower(owner) and upper(neighbor) part

$$\frac{V_{i}}{\Delta t_{i}} \Delta \overrightarrow{W}_{i}^{n} + \sum_{j \in N(i)} \left(A_{c,i}^{+} + A_{v,i}^{*} \right) \Delta \overrightarrow{W}_{i}^{n} S_{ij}$$

$$+ \sum_{j \in L(i)} \left(A_{c,j}^{-} - A_{v,j}^{*} \right) \Delta \overrightarrow{W}_{j}^{n} S_{ij}$$

$$+ \sum_{j \in U(i)} \left(A_{c,j}^{-} - A_{v,j}^{*} \right) \Delta \overrightarrow{W}_{j}^{n} S_{ij} = -\operatorname{Res}_{i}^{n}$$

- Block matrix system

 $(D+L+U)\Delta W^{n} = -R^{n}$

Block Matrix Example

Approximate Factorization

$$(D+L)D^{-1}(D+U)\Delta W^{n} = -R^{n} + LD^{-1}U\Delta W^{n}$$

- Factorization error

$$o(\Delta t^2) \quad if \quad \Delta t \ll \Delta x$$

$$o(\Delta t) \quad if \quad \Delta t \gg \Delta x$$

- Invert the matrix in two steps
 - Forward sweep

$$(D+L)\Delta W^* = -R^n$$

D_0	0	0	0	0	0	0	0	0	0	0	0	0	0	ΔW^*_{\circ}	
L_0	D_1	0	0	0	0	0	0	0	0	0	0	0	0	ΔW_1^*	
0	0	D_2	0	0	0	0	0	0	0	0	0	0	0	ΔW^*_2	
0	0	L_2	D_3	0	0	0	0	0	0	0	0	0	0	$\Delta W^{\frac{2}{3}}$	
0	0	0	0	D_4	0	0	0	0	0	0	0	0	0	ΔW^{*}_{A}	
0	0	0	0	L_4	D_5	0	0	0	0	0	0	0	0	ΔW_{5}^{\dagger}	
0	0	0	0	0	0	D_6	0	0	0	0	0	0	0	ΔW_{6}^{*}	$- \begin{bmatrix} \mathbf{D}^n \end{bmatrix}$
0	0	0	0	0	0	L_6	D_7	0	0	0	0	0	0	ΔW_7^*	$ [\Lambda]$
L_0	0	0	0	0	0	0	L_7	D_8	0	0	0	0	0	ΔW_8^*	
0	L_1	L_2	0	0	0	0	0	0	D_9	0	0	0	0	ΔW_{9}^{*}	
0	0	0	0	0	L_5	L_6	0	0	0	D_{10}	0	0	0	ΔW_{10}^*	
0	0	0	L_3	L_4	0	0	0	0	0	0	D_{11}	0	0	ΔW_{11}^*	
0	0	0	0	0	0	0	0	0	0	L_{10}	L_{11}	D_{12}	0	ΔW_{12}^*	
0	0	0	0	0	0	0	0	L_8	L_9	0	0	L_{12}	D_{13}	ΔW_{13}^*	
								Ŭ							

- Backward sweep

 $(D+U)\Delta W^{n} = D\Delta W^{*}$

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

Results – Inviscid Flow(2D)

Transonic Flow over a Bump in Channel

Results – Inviscid Flow(2D)

Oblique Shock Reflection on a Plane Wall

- Uniform triangular grid
- $M_{\infty} = 2.9$

International

th OpenFOAM®Workshop

Transonic Flow Over RAE2822 Airfoil

- 36,000 cells Hybrid(quad + tri) grid
- _ M_∞ = 0.675
- komegaSST turbulence model

- Transonic Flow over ONERA M6 Wing
 - _ M_{_} = 0.8395, p_{_}=315980pa, T_{_}=255.56K
 - AoA = 3.06
 - Hex(NASA) and hybrid mesh

Transonic Flow over ONERA M6 Wing

OpenFOAM®Workshop

- Transonic Flow around DLR F4 Wing-Body
 - M[°] = 0.75, P[°] = 116577pa, T[°] = 300K
 - AoA = 0.49
 - Hybrid mesh from AIAA DPW II (5,200,000 cells)

26

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks

Concluding Remarks

Summary

- Implicit LU-SGS algorithm and new boundary condition have been implemented
- The numerical results obtained indicate that implicit algorithm leads to an increase in performance over the explicit counter part
- Solution was comparable to commercial code

Future works

- More efficient version of LU-SGS
- Low mach number preconditioning
- Multigrid

penFOAM® Workshop

Thank you ...

... for your attention!

