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Background

Based on DensityBasedTurbo by Oliver Borm
– Density Based Coupled Algorithm
– Explicit Time Integration
– Godunov Type Flux Schemes
– Multi-Dimensional Slope Limiter
– Local Time Stepping
– Steady & Transient Solvers

We have focused on steady state solver
– Implementation of implicit time integration
– Implementation of far-field boundary condition

● Utilizing riemann invariants
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Implicit Finite Volume Discretization

 Favre-Averaged Navier-Stokes Equations in Integral Form

∫V
∂W⃗
∂ t

dV +∮S ( F⃗ c− F⃗ v ) dS=0

W⃗=[
ρ
ρ U⃗
ρE ] F⃗ c=[

(ρU⃗ ) f⋅⃗n

(ρ U⃗⊗U⃗ + p Ī ) f⋅⃗n

(ρH U⃗ ) f⋅⃗n
]

F⃗ v=[
0
τ̄ f⋅⃗n

( τ̄⋅⃗n ) f⋅⃗n+(ραeff ∇ h ) f⋅⃗n+{(μ+
μ t
σk )∇ k } f⋅⃗n]
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Implicit Finite Volume Discretization

 Spatial Discretization

V i

∂W⃗ i

∂ t
+ ∑

j∈N (i)
( F⃗ c , ij− F⃗ v , ij ) S ij=0

i

j

j

j
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Implicit Finite Volume Discretization

 Time Integration

– Explicit

– Implicit ( Backward Euler)

V i

Δ t i
(W⃗ i

n+1−W⃗ i
n)+ ∑

j∈N (i)
( F⃗ c , ij

n − F⃗ v ,ij
n ) S ij=0

V i

Δ t i
(W⃗ i

n+1
−W⃗ i

n)+ ∑
j∈N (i)

( F⃗ c , ij
n+1
− F⃗ v , ij

n+1)S ij=0
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Implicit Finite Volume Discretization

 Linearizing Flux Vector
– Linearizing both convective and viscous fluxes using Taylor's series expansion.

Result in

where

F⃗ ij
n+1≈ F⃗ ij

n+( ∂ F⃗∂W⃗ )ijΔ W⃗ ij
n

V i

Δ t i
Δ W⃗ i

n+ ∑
j∈N (i )

( Ac ,ij−Av ,ij )Δ W⃗ ij
n S ij=−Res i

n

Δ W⃗ i
n
=W⃗ i

n+1
−W⃗ i

n

Ac=
∂ F⃗ c

∂W⃗
: Convective Flux Jacobian

Av=
∂ F⃗ v

∂ W⃗
: Viscous Flux Jacobian
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Evaluation of Flux Jacobian
– Steger-Warming's Flux Vector Splitting for Convective Flux
– Thin Shear Layer Approximation(TSL) for Viscous Flux

V i

Δ t i
Δ W⃗ i

n
+ ∑

j∈N (i)
(Ac ,i


+Av ,i

∗
)Δ W⃗ i

n S ij

+ ∑
j∈N (i)

(Ac , j
−
−Av , j

∗
)ΔW⃗ j

n S ij=−Resi
n
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Split off-diagonal term into lower(owner) and upper(neighbor) 
part

– Block matrix system

V i

Δ t i
Δ W⃗ i

n
+ ∑

j∈N (i)
(Ac ,i


+Av ,i

∗
)ΔW⃗ i

n S ij

+ ∑
j∈L (i)

( Ac , j
−−Av , j

∗
)Δ W⃗ j

n S ij

+ ∑
j∈U (i )

(Ac , j
−
−Av , j

∗
)Δ W⃗ j

n S ij=−Resi
n

(D+L+U )ΔW n=−Rn
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Block Matrix Example

1

4

56

3

2

0

13

10

7

12
11

8

9

(
D0 U1 0 0 0 0 0 0 U 8 0 0 0 0 0
L0 D1 0 0 0 0 0 0 0 U 9 0 0 0 0
0 0 D2 U 3 0 0 0 0 0 U 9 0 0 0 0

0 0 L2 D3 0 0 0 0 0 0 0 U 11 0 0
0 0 0 0 D4 U 5 0 0 0 0 0 U 11 0 0
0 0 0 0 L4 D5 0 0 0 0 U 10 0 0 0
0 0 0 0 0 0 D6 U 7 0 0 U 10 0 0 0

0 0 0 0 0 0 L6 D 7 U 8 0 0 0 0 0
L0 0 0 0 0 0 0 L7 D 8 0 0 0 0 U 13

0 L1 L2 0 0 0 0 0 0 D9 0 0 0 U 13

0 0 0 0 0 L5 L6 0 0 0 D10 0 U 12 0
0 0 0 L3 L4 0 0 0 0 0 0 D11 U 12 0
0 0 0 0 0 0 0 0 0 0 L10 L11 D12 U 13

0 0 0 0 0 0 0 0 L8 L9 0 0 L12 D13

)
D+L+U
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Approximate Factorization

– Factorization error

(D+L)D−1(D+U )ΔW n=−Rn+LD−1U ΔW n

ο(Δ t2) if Δ t≪Δ x
ο(Δ t) if Δ t≫Δ x
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Invert the matrix in two steps
– Forward sweep

(D+L)ΔW∗=−Rn

(
D0 0 0 0 0 0 0 0 0 0 0 0 0 0
L0 D1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 D2 0 0 0 0 0 0 0 0 0 0 0
0 0 L2 D3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 D4 0 0 0 0 0 0 0 0 0
0 0 0 0 L4 D5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 D6 0 0 0 0 0 0 0
0 0 0 0 0 0 L6 D7 0 0 0 0 0 0
L0 0 0 0 0 0 0 L7 D8 0 0 0 0 0
0 L1 L2 0 0 0 0 0 0 D9 0 0 0 0
0 0 0 0 0 L5 L6 0 0 0 D10 0 0 0
0 0 0 L3 L4 0 0 0 0 0 0 D11 0 0
0 0 0 0 0 0 0 0 0 0 L10 L11 D12 0
0 0 0 0 0 0 0 0 L8 L9 0 0 L12 D13

)(
ΔW 0

∗

ΔW 1
∗

ΔW 2
∗

ΔW 3
∗

ΔW 4
∗

ΔW 5
∗

ΔW 6
∗

ΔW 7
∗

ΔW 8
∗

ΔW 9
∗

ΔW 10
∗

ΔW 11
∗

ΔW 12
∗

ΔW 13
∗

) = −[Rn ]
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Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

– Backward sweep

(D+U )ΔW n=DΔW∗

(
D0 U 1 0 0 0 0 0 0 U 8 0 0 0 0 0
0 D1 0 0 0 0 0 0 0 U 9 0 0 0 0

0 0 D2 U 3 0 0 0 0 0 U 9 0 0 0 0
0 0 0 D3 0 0 0 0 0 0 0 U 11 0 0
0 0 0 0 D4 U 5 0 0 0 0 0 U 11 0 0
0 0 0 0 0 D5 0 0 0 0 U 10 0 0 0

0 0 0 0 0 0 D6 U 7 0 0 U 10 0 0 0
0 0 0 0 0 0 0 D7 U 8 0 0 0 0 0
0 0 0 0 0 0 0 0 D8 0 0 0 0 U 13

0 0 0 0 0 0 0 0 0 D9 0 0 0 U 13

0 0 0 0 0 0 0 0 0 0 D10 0 U 12 0
0 0 0 0 0 0 0 0 0 0 0 D11 U 12 0
0 0 0 0 0 0 0 0 0 0 0 0 D12 U 13

0 0 0 0 0 0 0 0 0 0 0 0 0 D13

)(
ΔW 0

n

ΔW 1
n

ΔW 2
n

ΔW 3
n

ΔW 4
n

ΔW 5
n

ΔW 6
n

ΔW 7
n

ΔW 8
n

ΔW 9
n

ΔW 10
n

ΔW 11
n

ΔW 12
n

ΔW 13
n

) = [D ΔW∗]
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Results – Inviscid Flow(2D)

Transonic Flow over a Bump in Channel
– 65 X 17 grid

– M
∞
 = 0.675

From Ni, 1982

Current

Residual history

Current
(maxCo = 500)

Explicit
(maxCo = 2)
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Results – Inviscid Flow(2D)

Oblique Shock Reflection on a Plane Wall
– Uniform triangular grid

– M
∞
 = 2.9

       

commercial
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Results – Viscous Turbulent Flow(2D)

Transonic Flow Over RAE2822 Airfoil
– 36,000 cells Hybrid(quad + tri) grid 

– M
∞
 = 0.675

– komegaSST turbulence model
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Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
– M

∞
 = 0.8395, p

∞
=315980pa, T

∞
=255.56K

– AoA = 3.06
– Hex(NASA) and hybrid mesh 

OpenFOAM
OpenFOAM

Commercial code Commercial code
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Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
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Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
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Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
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Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body
– M

∞
 = 0.75, p

∞
=116577pa, T

∞
=300K

– AoA = 0.49
– Hybrid mesh from AIAA DPW II ( 5,200,000 cells )

OpenFOAM

Commercial Code
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Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body
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Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body
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Concluding Remarks

Summary
– Implicit LU-SGS algorithm and new boundary condition have been 

implemented 
– The numerical results obtained indicate that implicit algorithm leads to an 

increase in performance over the explicit counter part
– Solution was comparable to commercial code

Future works
– More efficient version of LU-SGS
– Low mach number preconditioning
– Multigrid
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Thank you …Thank you …

… for your attention!
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