
Development and Validation of a Density-Based 
Implicit Solver Using LU-SGS Algorithm

JaeHeung Gill1, ByoungYun Kim1, JiHong Kim2, HoonBum Shin2, SungKi Jung2 and 
KyuHong Kim3 

 1 NEXTFoam Co., Ltd.

 2 Korea Aerospace Indutries, LTD.

 3 Seoul National University



3Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



4Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



5Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Background

Based on DensityBasedTurbo by Oliver Borm
– Density Based Coupled Algorithm
– Explicit Time Integration
– Godunov Type Flux Schemes
– Multi-Dimensional Slope Limiter
– Local Time Stepping
– Steady & Transient Solvers

We have focused on steady state solver
– Implementation of implicit time integration
– Implementation of far-field boundary condition

● Utilizing riemann invariants



6Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



7Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Implicit Finite Volume Discretization

 Favre-Averaged Navier-Stokes Equations in Integral Form

∫V
∂W⃗
∂ t

dV +∮S ( F⃗ c− F⃗ v ) dS=0

W⃗=[
ρ
ρ U⃗
ρE ] F⃗ c=[

(ρU⃗ ) f⋅⃗n

(ρ U⃗⊗U⃗ + p Ī ) f⋅⃗n

(ρH U⃗ ) f⋅⃗n
]

F⃗ v=[
0
τ̄ f⋅⃗n

( τ̄⋅⃗n ) f⋅⃗n+(ραeff ∇ h ) f⋅⃗n+{(μ+
μ t
σk )∇ k } f⋅⃗n]



8Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Implicit Finite Volume Discretization

 Spatial Discretization

V i

∂W⃗ i

∂ t
+ ∑

j∈N (i)
( F⃗ c , ij− F⃗ v , ij ) S ij=0

i

j

j

j



9Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Implicit Finite Volume Discretization

 Time Integration

– Explicit

– Implicit ( Backward Euler)

V i

Δ t i
(W⃗ i

n+1−W⃗ i
n)+ ∑

j∈N (i)
( F⃗ c , ij

n − F⃗ v ,ij
n ) S ij=0

V i

Δ t i
(W⃗ i

n+1
−W⃗ i

n)+ ∑
j∈N (i)

( F⃗ c , ij
n+1
− F⃗ v , ij

n+1)S ij=0



10Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Implicit Finite Volume Discretization

 Linearizing Flux Vector
– Linearizing both convective and viscous fluxes using Taylor's series expansion.

Result in

where

F⃗ ij
n+1≈ F⃗ ij

n+( ∂ F⃗∂W⃗ )ijΔ W⃗ ij
n

V i

Δ t i
Δ W⃗ i

n+ ∑
j∈N (i )

( Ac ,ij−Av ,ij )Δ W⃗ ij
n S ij=−Res i

n

Δ W⃗ i
n
=W⃗ i

n+1
−W⃗ i

n

Ac=
∂ F⃗ c

∂W⃗
: Convective Flux Jacobian

Av=
∂ F⃗ v

∂ W⃗
: Viscous Flux Jacobian



11Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



12Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Evaluation of Flux Jacobian
– Steger-Warming's Flux Vector Splitting for Convective Flux
– Thin Shear Layer Approximation(TSL) for Viscous Flux

V i

Δ t i
Δ W⃗ i

n
+ ∑

j∈N (i)
(Ac ,i


+Av ,i

∗
)Δ W⃗ i

n S ij

+ ∑
j∈N (i)

(Ac , j
−
−Av , j

∗
)ΔW⃗ j

n S ij=−Resi
n



13Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Split off-diagonal term into lower(owner) and upper(neighbor) 
part

– Block matrix system

V i

Δ t i
Δ W⃗ i

n
+ ∑

j∈N (i)
(Ac ,i


+Av ,i

∗
)ΔW⃗ i

n S ij

+ ∑
j∈L (i)

( Ac , j
−−Av , j

∗
)Δ W⃗ j

n S ij

+ ∑
j∈U (i )

(Ac , j
−
−Av , j

∗
)Δ W⃗ j

n S ij=−Resi
n

(D+L+U )ΔW n=−Rn



14Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Block Matrix Example

1

4

56

3

2

0

13

10

7

12
11

8

9

(
D0 U1 0 0 0 0 0 0 U 8 0 0 0 0 0
L0 D1 0 0 0 0 0 0 0 U 9 0 0 0 0
0 0 D2 U 3 0 0 0 0 0 U 9 0 0 0 0

0 0 L2 D3 0 0 0 0 0 0 0 U 11 0 0
0 0 0 0 D4 U 5 0 0 0 0 0 U 11 0 0
0 0 0 0 L4 D5 0 0 0 0 U 10 0 0 0
0 0 0 0 0 0 D6 U 7 0 0 U 10 0 0 0

0 0 0 0 0 0 L6 D 7 U 8 0 0 0 0 0
L0 0 0 0 0 0 0 L7 D 8 0 0 0 0 U 13

0 L1 L2 0 0 0 0 0 0 D9 0 0 0 U 13

0 0 0 0 0 L5 L6 0 0 0 D10 0 U 12 0
0 0 0 L3 L4 0 0 0 0 0 0 D11 U 12 0
0 0 0 0 0 0 0 0 0 0 L10 L11 D12 U 13

0 0 0 0 0 0 0 0 L8 L9 0 0 L12 D13

)
D+L+U



15Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Approximate Factorization

– Factorization error

(D+L)D−1(D+U )ΔW n=−Rn+LD−1U ΔW n

ο(Δ t2) if Δ t≪Δ x
ο(Δ t) if Δ t≫Δ x



16Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

 Invert the matrix in two steps
– Forward sweep

(D+L)ΔW∗=−Rn

(
D0 0 0 0 0 0 0 0 0 0 0 0 0 0
L0 D1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 D2 0 0 0 0 0 0 0 0 0 0 0
0 0 L2 D3 0 0 0 0 0 0 0 0 0 0
0 0 0 0 D4 0 0 0 0 0 0 0 0 0
0 0 0 0 L4 D5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 D6 0 0 0 0 0 0 0
0 0 0 0 0 0 L6 D7 0 0 0 0 0 0
L0 0 0 0 0 0 0 L7 D8 0 0 0 0 0
0 L1 L2 0 0 0 0 0 0 D9 0 0 0 0
0 0 0 0 0 L5 L6 0 0 0 D10 0 0 0
0 0 0 L3 L4 0 0 0 0 0 0 D11 0 0
0 0 0 0 0 0 0 0 0 0 L10 L11 D12 0
0 0 0 0 0 0 0 0 L8 L9 0 0 L12 D13

)(
ΔW 0

∗

ΔW 1
∗

ΔW 2
∗

ΔW 3
∗

ΔW 4
∗

ΔW 5
∗

ΔW 6
∗

ΔW 7
∗

ΔW 8
∗

ΔW 9
∗

ΔW 10
∗

ΔW 11
∗

ΔW 12
∗

ΔW 13
∗

) = −[Rn ]



17Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Lower-Upper Symmetric Gauss-Seidel(LU-SGS) Algorithm

– Backward sweep

(D+U )ΔW n=DΔW∗

(
D0 U 1 0 0 0 0 0 0 U 8 0 0 0 0 0
0 D1 0 0 0 0 0 0 0 U 9 0 0 0 0

0 0 D2 U 3 0 0 0 0 0 U 9 0 0 0 0
0 0 0 D3 0 0 0 0 0 0 0 U 11 0 0
0 0 0 0 D4 U 5 0 0 0 0 0 U 11 0 0
0 0 0 0 0 D5 0 0 0 0 U 10 0 0 0

0 0 0 0 0 0 D6 U 7 0 0 U 10 0 0 0
0 0 0 0 0 0 0 D7 U 8 0 0 0 0 0
0 0 0 0 0 0 0 0 D8 0 0 0 0 U 13

0 0 0 0 0 0 0 0 0 D9 0 0 0 U 13

0 0 0 0 0 0 0 0 0 0 D10 0 U 12 0
0 0 0 0 0 0 0 0 0 0 0 D11 U 12 0
0 0 0 0 0 0 0 0 0 0 0 0 D12 U 13

0 0 0 0 0 0 0 0 0 0 0 0 0 D13

)(
ΔW 0

n

ΔW 1
n

ΔW 2
n

ΔW 3
n

ΔW 4
n

ΔW 5
n

ΔW 6
n

ΔW 7
n

ΔW 8
n

ΔW 9
n

ΔW 10
n

ΔW 11
n

ΔW 12
n

ΔW 13
n

) = [D ΔW∗]



18Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



19Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Inviscid Flow(2D)

Transonic Flow over a Bump in Channel
– 65 X 17 grid

– M
∞
 = 0.675

From Ni, 1982

Current

Residual history

Current
(maxCo = 500)

Explicit
(maxCo = 2)



20Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Inviscid Flow(2D)

Oblique Shock Reflection on a Plane Wall
– Uniform triangular grid

– M
∞
 = 2.9

       

commercial



21Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(2D)

Transonic Flow Over RAE2822 Airfoil
– 36,000 cells Hybrid(quad + tri) grid 

– M
∞
 = 0.675

– komegaSST turbulence model

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5
EXP

OpenFOAM

Commercial

WIND V5

WIND v1

NPARC

x/c

-C
p



22Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
– M

∞
 = 0.8395, p

∞
=315980pa, T

∞
=255.56K

– AoA = 3.06
– Hex(NASA) and hybrid mesh 

OpenFOAM
OpenFOAM

Commercial code Commercial code



23Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
 



24Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
 

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5
y/b=0.2

Wind

Open
FOAM

x/l

-C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5
y/b=0.44

Wind

Open
FOAM

x/l

-C
p



25Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow over ONERA M6 Wing
 

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5
y/b=0.65

Wind

Open
FOAM

x/l

-C
p

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

1.5
y/b=0.9

Wind

Open
FOAM

x/l

-C
p



26Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body
– M

∞
 = 0.75, p

∞
=116577pa, T

∞
=300K

– AoA = 0.49
– Hybrid mesh from AIAA DPW II ( 5,200,000 cells )

OpenFOAM

Commercial Code



27Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
y/b=0.239

Wind Tunnel
OF-Implicit
Commercial

x/c

-C
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
y/b=0.377

Wind Tunnel
OF-Implicit
Commercial

x/c

-C
p



28Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Results – Viscous Turbulent Flow(3D)

Transonic Flow around DLR F4 Wing-Body

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
y/b=0.514

Wind Tunnel
OF-Implicit
Commercial

x/c

-C
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.5

0

0.5

1

1.5
y/b=0.847

Wind Tunnel
OF-Implicit
Commercial

x/c

-C
p



29Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Outline

1. Background

2. Implicit Finite Volume Discretization

3. LU-SGS Algorithm

4. Results

5. Concluding Remarks



30Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm

Concluding Remarks

Summary
– Implicit LU-SGS algorithm and new boundary condition have been 

implemented 
– The numerical results obtained indicate that implicit algorithm leads to an 

increase in performance over the explicit counter part
– Solution was comparable to commercial code

Future works
– More efficient version of LU-SGS
– Low mach number preconditioning
– Multigrid



Development and Validation of a Density-Based Implicit Solver Using LU-SGS Algorithm 31

Thank you …Thank you …

… for your attention!


	First Slide Example
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Final Slide Example

