NEXT foam

open source CFD consulting

(N

Boundary Conditions - OpenFOAM-2.3.0

A
YAEE CHFOIA

Open Source CFD Consulting

NEXT foam
153-790, MEEYA| 22X 7HE 4S80/ E-ME| AS 11065

February 2014

3t @

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31
1.32
1.33
1.34
1.35

Boundary Conditions - OpenFOAM-2.3.0

1 Derived boundary conditions 5
activeBaffleVelocity 5
activePressureForceBaffleVelocity o L. 6
advective L L e 7
codedFixedValue 8
codedMixed 9
cylindricallnletVelocity 10
cylindricallnletVelocity L 11
externalCoupledMixed 12
fan . .. e 14
fanPressure 15
fixedFluxPressure 16
fixedInternalValue 17
fixedJump 18
fixedJumpAMI 19
fixedMean L e 20
fixedNormalSlip e 21
fixedPressureCompressibleDensity oL 22
flowRatelnletVelocity L 23
fluxCorrectedVelocity L 25
freestream L e 26
freestreamPressure oL oL 27
inletOutlet 28
inletOutletTotalTemperature 29
interstitiallnletVelocity o 30
mappedField 31
mappedFixedInternalValue o oo 32
mappedFixedPushedInternalValue 33
mappedFixedValue 34
mappedFlowRate 35
mappedVelocityFluxFixedValue 36
movingWallVelocity 37
oscillatingFixedValue 38
outletInlet e 39
outletMappedUniformlInlet oL 40
outletPhaseMeanVelocity L 41

Boundary Conditions - OpenFOAM-2.3.0

1.36 partialSlip e 42
1.37 phaseHydrostaticPressure o 43
1.38 pressureDirectedInletOutletVelocity 44
1.39 pressureDirectedInletVelocity oo 0oL 45
1.40 pressurelnletOutletParSlipVelocity 46
1.41 pressurelnletOutletVelocity o L 47
1.42 pressurelnletUniformVelocity o o oo 48
1.43 pressurelnletVelocity L oo 49
1.44 pressureNormallnletOutletVelocity 50
1.45 rotatingPressurelnletOutletVelocity 51
1.46 rotatingTotalPressure L 52
1.47 rotatingWallVelocity Lo 53
148 slip . . o 54
1.49 supersonicFreestream 99
1.50 surfaceNormalFixedValue o o 56
1.51 swirlFlowRatelnletVelocity o o 57
1.52 syringePressure L 58
1.53 timeVaryingMappedFixedValue 99
1.54 totalPressure L 60
1.55 totalTemperature L 62
1.56 translatingWallVelocity oo 63
1.57 turbulentInlet 64
1.58 turbulentIntensityKineticEnergyInlet 65
1.59 uniformDensityHydrostaticPressure 66
1.60 uniformFixedGradient 67
1.61 uniformFixedValue 68
1.62 uniformJump 69
1.63 uniformJumpAMI 70
1.64 uniformTotalPressure 71
1.65 wvariableHeightFlowRate 72
1.66 variableHeightFlowRatelnletVelocity 73
1.67 waveSurfacePressure L L L 74
1.68 waveTransmissive L 75
Turbulence and thermal boundary conditions 76
2.1 externalCoupledTemperatureMixed 76
2.2 externalWallHeatFluxTemperature 78
2.3 thermalBafflelD 80
2.4 totalFlowRateAdvectiveDiffusiveo 82
2.5 turbulentHeatFluxTemperature 83
2.6 turbulentTemperatureCoupledBafleMixed 84
2.7 turbulentTemperatureRadCoupledMixed 86

Boundary Conditions - OpenFOAM-2.3.0

2.8 wallHeatTransfer 87
2.9 convectiveHeatTransfer 88
2.10 turbulentMixingLengthDissipationRatelnlet 89
2.11 turbulentMixingLengthFrequencyInlet 90
2.12 atmBoundaryLayerInletEpsilon 0000 91
2.13 atmBoundaryLayerInletVelocity o . 93
2.14 turbulentHeatFluxTemperature 95
Wall Functions e 96
3.1 compressible::alphatJayatillekeWallFunction 96
3.2 compressible::alphatWallFunction, 97
3.3 compressible::epsilonLowReWallFunction 98
3.4 compressible::epsilonWallFunction 99
3.5 fWallFunction L 100
3.6 compressible:kLowReWallFunction 101
3.7 compressible::kgRWallFunction L L0000 102
3.8 compressible::mutkRoughWallFunction 103
3.9 compressible::mutkWallFunction 104
3.10 compressible::mutLowReWallFunction 105
3.11 compressible::mutURoughWallFunction 106
3.12 compressible::mutUSpaldingWallFunction 107
3.13 compressible::mutUWallFunction 108
3.14 compressible::mutWallFunction 109
3.15 compressible::omegaWallFunction L L0000 110
3.16 compressible::v2WallFunction L L oo 111
3.17 incompressible::alphatJayatillekeWallFunction 112
3.18 incompressible::epsilonLowReWallFunction 113
3.19 incompressible::epsilonWallFunction 114
3.20 incompressible::kgRWallFunction Lo oo 115
3.21 incompressible::nutkAtmRoughWallFunction 116
3.22 incompressible::nutkRoughWallFunction 117
3.23 incompressible::nutkWallFunction 118
3.24 incompressible::nutLowReWallFunction o000 119
3.25 incompressible::nutURoughWallFunction 120
3.26 incompressible::nutUSpaldingWallFunction 121
3.27 incompressible::nutUTabulatedWallFunction 122
3.28 incompressible:nutUWallFunction L0000 123
3.29 incompressible::nutWallFunction 124
Radiation boundary conditions 125
4.1 greyDiffusiveRadiationMixed L oo 125
4.2 greyDiffusiveViewFactor oL 126
4.3 MarshakRadiation Lo 127

Boundary Conditions - OpenFOAM-2.3.0

4.4 MarshakRadiationFixedTemperature 128

4.5 wideBandDiffusiveRadiation

Boundary Conditions - OpenFOAM-2.3.0

1 Derived boundary conditions

1.1 activeBaffleVelocity

This velocity boundary condition simulates the opening of a baffle due to local flow conditions,
by merging the behaviours of wall and cyclic conditions. The baffle joins two mesh regions, where
the open fraction determines the interpolation weights applied to each cyclic- and neighbour-
patch contribution.

We determine whether the baffle is opening or closing from the sign of the net force across the

baffle, from which the baffle open fraction is updated using:

. dt
T = Told + szgn(Fnet)ﬁ (1.1)

x : baffle open fraction [0-1]
Zoq - baffle open fraction on previous evaluation
dt : simulation time step
DT : time taken to open the baffle
Fet - net force across the baffle

Property Description Required Default value

p pressure field name no p

cyclicPatch cylclic patch name yes

orientation 1 or -1 used to switch flow direction yes

openFraction current opatch open fraction [0-1] yes

openingTime time taken to open the baffle yes

maxOpenFractionDelta max open fraction change per timestep yes

myPatch
{
type activeBaffleVelocity;
P i<k
cyclicPatch cyclicl;
orientation 1;
openFraction 0.2;
openingTime 5.0;

maxOpenFractionDelta 0.1;

Boundary Conditions - OpenFOAM-2.3.0

1.2 activePressureForceBaffleVelocity

This boundary condition is applied to the flow velocity, to simulate the opening of a baffle

due to local flow conditions, by merging the behaviours of wall and cyclic conditions.

The baffle joins two mesh regions, where the open fraction determines the interpolation weights

applied to each cyclic- and neighbour-patch contribution.

Once opened the baffle continues to open at a fixed rate using

dt

T = Tod + pp (1.2)
x : baffle open fraction [0-1]
To1q - baffle open fraction on previous evaluation
dt : simulation time step
DT : time taken to open the baffle
Property Description Required Default value
p pressure field name no p
cyclicPatch cylclic patch name yes
orientation 1 or -1 used to switch flow direction yes
openFraction current opatch open fraction [0-1] yes
openingTime time taken to open the baffle yes
maxOpenkractionDelta max open fraction change per timestep yes
minThresholdValue minimum open fraction for activation yes
forceBased force (true) or pressure-based (false) activation yes

myPatch

{
type
p
cyclicPatch
orientation
openFraction

openingTime

activePressureForceBaffleVelocity;
i<k

cyclicl;

1;

0.2;

5.0;

maxOpenFractionDelta 0.1;
minThresholdvalue 0.01;

forceBased

false;

Boundary Conditions - OpenFOAM-2.3.0

1.3 advective

This boundary condition provides an advective outflow condition, based on solving DDt (psi,
U) = 0 at the boundary.

The standard (Euler, backward, CrankNicolson) time schemes are supported. Additionally an
optional mechanism to relax the value at the boundary to a specified far-field value is provided
which is switched on by specifying the relaxation length-scale lInf and the far-field value fieldInf.

The flow/wave speed at the outlet is provided by the virtual function advectionSpeed() the
default implementation of which requires the name of the flux field (phi) and optionally the
density (rho) if the mass-flux rather than the volumetric-flux is given.

The flow/wave speed at the outlet can be changed by deriving a specialised BC from this class
and over-riding advectionSpeed() e.g. in waveTransmissiveFvPatchField the advectionSpeed()
calculates and returns the flow-speed plus the acoustic wave speed creating an acoustic wave

transmissive boundary condition.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
fieldInf value of field beyond patch no
IInf distance beyond patch for fieldInf no
myPatch
{
type advective;
phi phi;

Note :
If IInf is specified, fieldInf will be required; rho is only required in the case of a mass-based

flux.

Boundary Conditions - OpenFOAM-2.3.0

1.4 codedFixedValue

Constructs on-the-fly a new boundary condition (derived from fixed ValueFvPatchField) which
is then used to evaluate.

myPatch

{
type codedFixedValue;
value uniform 0;

redirectType rampedFixedValue; // name of generated BC

code
#1{

operator==(min (10, 0.lxthis->db().time() .value()));
#1;

//codeInclude

Va2t

// #include "fvCFD.H"
J/#;

//codeOptions

S/ H#A

// -IS(LIB_SRC)/finiteVolume/lnInclude
JI#};

A special form is if the ’code’ section is not supplied. In this case the code is read from a

(runTimeModifiable!) dictionary system/codeDict which would have a corresponding entry:

myPatch
{
code
#{
operator==(min (10, 0.lxthis->db () .time().value()));
#};

Boundary Conditions - OpenFOAM-2.3.0

1.5 codedMixed

Constructs on-the-fly a new boundary condition (derived from mixedFvPatchField) which is

then used to evaluate.

myPatch
{
type codedMixed;
refvalue uniform (0 0 0);
refGradient uniform (0 0 0);
valueFraction uniform 1;
redirectType rampedMixed; // name of generated BC
code
#1{
this-—>refValue () =
vector (1, 0, 0)

*min (10, O0.lxthis->db().time () .value());
this->refGrad() = vector::zero;
this->valueFraction() = 1.0;

#};

//codeInclude

//H#L

// #include "fvCFD.H"

SN

//codeOptions

//#A{

// -IS(LIB _SRC)/finiteVolume/lnInclude
S/#};

A special form is if the 'code’ section is not supplied. In this case the code gets read from a

(runTimeModifiable!) dictionary system/codeDict which would have a corresponding entry

myPatch
{
code
#{
this->refvalue () = min(10, 0.l*xthis->db () .time () .value());
this->refGrad() = vector::zero;
this—->valueFraction() = 1.0;
#1;

Boundary Conditions - OpenFOAM-2.3.0

1.6 cylindricallnletVelocity

This boundary condition describes an inlet vector boundary condition in cylindrical co-ordinates

given a central axis, central point, rpm, axial and radial velocity.

Property Description Required Default value
axis axis of rotation yes
centre centre of rotation yes
axialVelocity axial velocity profile [m/s] yes
radialVelocity —radial velocity profile [m/s] yes
rpm rotational speed (revolutions per minute) yes

myPatch

{
type cylindricalInletVelocity;
axis (00 1);
centre (0 0 0);

axialVelocity constant 30;
radialVelocity constant -10;

rpm constant 100;

Note :
The axialVelocity, radialVelocity and rpm entries are DataEntry types, able to describe time

varying functions. The example above gives the usage for supplying constant values.

10

Boundary Conditions - OpenFOAM-2.3.0

1.7 cylindricallnletVelocity

This boundary condition describes an inlet vector boundary condition in cylindrical co-ordinates

given a central axis, central point, rpm, axial and radial velocity.

Property Description Required Default value
axis axis of rotation yes
centre centre of rotation yes
axialVelocity axial velocity profile [m/s] yes
radialVelocity —radial velocity profile [m/s] yes
rpm rotational speed (revolutions per minute) yes

myPatch

{
type cylindricalInletVelocity;
axis (00 1);
centre (0 0 0);

axialVelocity constant 30;
radialVelocity constant -10;

rpm constant 100;

Note :
The axialVelocity, radialVelocity and rpm entries are DataEntry types, able to describe time

varying functions. The example above gives the usage for supplying constant values.

11

Boundary Conditions - OpenFOAM-2.3.0

1.8 externalCoupledMixed

This boundary condition provides an interface to an external application. Values are trans-

ferred as plain text files, where OpenFOAM data is written as:
Patch: <patch name>

<magSfl> <valuel> <surfaceNormalGradient1>

<magSf2> <value2> <surfaceNormalGradient2>

<magSf3> <valued> <surfaceNormalGradient3>

<magSfN> <valueN> <surfaceNormalGradientN>
and received as the constituent pieces of the ‘mixed’ condition, i.e.
Patch: <patch name>

<valuel> <gradientl> <valueFracionl>

<value2> <gradient2> <valueFracion2>

<value3> <gradient3> <valueFracion3>

<valueN> <gradientN> <valueFracionN>
Data is sent/received as a single file for all patches from the directory
$FOAM_CASE/<commsDir>
At start-up, the boundary creates a lock file, i.e..

OpenFOAM.lock

. to signal the external source to wait. During the boundary condition update, boundary

values are written to file, e.g.
<fileName>.out

The lock file is then removed, instructing the external source to take control of the program

execution. When ready, the external program should create the return values, e.g. to file
<fileName>.in

. and then re-instate the lock file. The boundary condition will then read the return values,

and pass program execution back to OpenFOAM.

12

Boundary Conditions - OpenFOAM-2.3.0

Property Description Required Default value
commsDir communications directory yes

fileName transfer file name yes

waitInterval interval [s] between file checks no 1

timeOut time after which error invoked [s] no 100*waitInterval
calcFrequency calculation frequency no 1

initByExternal external app to initialises values yes

log log program control no

myPatch

{
type externalCoupled;
commsDir "SFOAM_CASE/comms";
fileName data;
calcFrequency 1;

initByExternal vyes;

13

Boundary Conditions - OpenFOAM-2.3.0

1.9 fan

This boundary condition provides a jump condition, using the ¢yclic condition as a base.

The jump is specified as a DataEntry type, to enable the use of, e.g. contant, polynomial,
table values.

Property Description Required Default value

patchType underlying patch type should be cyclic yes

jumpTable jump data, e.g. csvF'ile yes

myPatch
{
type fan;
patchType cyclic;
JjumpTable csvFile;
csvFileCoeffs
{
hasHeaderLine 1;
refColumn ;

componentColumns 1(1);

separator "

fileName "SFOAM_CASE/constant/pressureVsU";
}
value uniform 0;

The above example shows the use of a comma separated (CSV) file to specify the jump con-
dition.

Note :
The underlying patchType should be set to cyclic

14

1.10 fanPressure

Boundary Conditions - OpenFOAM-2.3.0

This boundary condition can be applied to assign either a pressure inlet or outlet total pres-

sure condition for a fan.

Property Description Required Default value
fileName fan curve file name yes
outOfBounds out of bounds handling yes
direction direction of flow through fan [in/out] yes
pO environmental total pressure yes

inlet

{

type
fileName
outOfBounds
direction
p0

value

outlet

{

type
fileName
outOfBounds
direction
p0

value

fanPressure;
"fanCurve";
clamp;

in;

uniform 0;

uniform 0;

fanPressure;
"fanCurve";
clamp;

out;

uniform 0;

uniform 0;

Note :

If reverse flow is possible or expected use the pressurelnletOutletVelocity condition instead.

15

Boundary Conditions - OpenFOAM-2.3.0

1.11 fixedFluxPressure

This boundary condition adjusts the pressure gradient such that the flux on the boundary is
that specified by the velocity boundary condition.

The predicted flux to be compensated by the pressure gradient is evaluated as (¢ — bn/ A),
both of which are looked-up from the database, as is the pressure diffusivity used to calculate

the gradient using:

Pr/A— ¢
V(p) = =<7 (1.3)
1S fIDp
¢ : flux
D, : pressure diffusivity
Sf : patch face areas [m2]
Property Description Required Default value
phiHbyA name of predicted flux field no phiHbyA
phi name of flux field no phi
rho name of density field no rho
Dp name of pressure diffusivity field no Dp
myPatch
{
type fixedFluxPressure;
phiHbyA phiHbyA;
phi phi;
rho rho;
Dp Dp;

16

Boundary Conditions - OpenFOAM-2.3.0

1.12 fixedInternalValue

This boundary condition provides a mechanism to set boundary (cell) values directly into a

matrix, i.e. to set a constraint condition. Default behaviour is to act as a zero gradient condition.

myPatch
{
type fixedInternalValue;
value uniform 0; // place holder

Note :
This is used as a base for conditions such as the turbulence epsilon wall function, which applies

a near-wall constraint for high Reynolds number flows.

17

Boundary Conditions - OpenFOAM-2.3.0

1.13 fixedJump

This boundary condition provides a jump condition, using the cyclic condition as a base.

The jump is specified as a fixed value field, applied as an offset to the ’owner’ patch.

Property Description Required Default value

patchType underlying patch type should be cyclic yes

jump current jump value yes
myPatch
{
type fixedJump;
patchType cyclic;
Jump uniform 10;

The above example shows the use of a fixed jump of "10°.

Note :
The underlying patchType should be set to cyclic

18

Boundary Conditions - OpenFOAM-2.3.0

1.14 fixedJumpAMI

This boundary condition provides a jump condition, across non-conformal cyclic path-pairs,
employing an arbitraryMeshInterface (AMI).

The jump is specified as a fixed value field, applied as an offset to the ’owner’ patch.

Property Description Required Default value

patchType underlying patch type should be cyclic yes

jump current jump value yes
myPatch
{
type fixedJumpAMI;
patchType cyclic;
Jump uniform 10;

The above example shows the use of a fixed jump of "10°.

Note :
The underlying patchType should be set to cyclicAM I

19

Boundary Conditions - OpenFOAM-2.3.0

1.15 fixedMean

This boundary condition extrapolates field to the patch using the near-cell values and adjusts

the distribution to match the specified mean value.

Property Description Required Default value

meanValue mean value yes
myPatch
{
type fixedMean;
meanValue 1.0;

20

Boundary Conditions - OpenFOAM-2.3.0

1.16 fixedNormalSlip

This boundary condition sets the patch-normal component to a fixed value.

Property Description Required Default value

fixedValue fixed value yes

myPatch
{
type fixedNormalSlip;
fixedvalue uniform 0; // example entry for a scalar field

21

Boundary Conditions - OpenFOAM-2.3.0

1.17 fixedPressureCompressibleDensity

This boundary condition calculates a (liquid) compressible density as a function of pressure

and fluid properties:

P = Pl,sat + f(/)l * (p - psat) (1'4)

p : density [kg/m3]

Pl sat © saturation liquid density [kg/m3]
iy @ liquid compressibility

p : pressure [Pa]

Psat © saturation pressure [Pa

The variables p; sq¢, Psat and 1)y are retrieved from the thermodynamicProperties dictionary.

Property Description Required Default value

p pressure field name no p

myPatch
{

type fixedPressureCompressibleDensity;

p pi
value uniform 1;

22

Boundary Conditions - OpenFOAM-2.3.0

1.18 flowRatelnletVelocity

This boundary condition provides a velocity boundary condition, derived from the flux (vol-

umetric or mass-based), whose direction is assumed to be normal to the patch.

For a mass-based flux:
- the flow rate should be provided in kg/s
- if rhoName is "none” the flow rate is in m3/s
- otherwise rhoName should correspond to the name of the density field
- if the density field cannot be found in the database, the user must specify the inlet density
using the rholnlet entry

For a volumetric-based flux:

- the flow rate is in m3/s

Property Description Required Default value

massFlowRate mass flow rate [kg/s] no

volumetricFlowRate volumetric flow rate [m3/s] no

rholnlet inlet density no

Example for a volumetric flow rate

myPatch

{
type flowRateInletVelocity;
volumetricFlowRate 0.2;

value uniform (0 0 0); // placeholder

|

Example for a mass flow rate

myPatch
{
type flowRateInletVelocity;
massFlowRate 0.2;
rho rho;
rhoInlet 1.0;

The flowRate entry is a DataEntry type, meaning that it can be specified as constant, a poly-

nomial fuction of time, and ...

Boundary Conditions - OpenFOAM-2.3.0

Note :

- rholnlet is required for the case of a mass flow rate, where the density field is not available at
start-up

- the value is positive into the domain (as an inlet)

- may not work correctly for transonic inlets

- strange behaviour with potentialFoam since the U equation is not solved

24

Boundary Conditions - OpenFOAM-2.3.0

1.19 fluxCorrectedVelocity

This boundary condition provides a velocity outlet boundary condition for patches where the
pressure is specified. The outflow velocity is obtained by ”zeroGradient” and then corrected

from the flux:

U, = U, —n(n-U,) + " (1.5)
|5l

Up : velocity at the patch [m/s]
U, : velocity in cells adjacent to the patch [m/s]
n : patch normal vectors ¢, : flux at the patch [m3/s or kg/s]

Sy : patch face area vectors [m2]

Property Description Required Default value
phi name of flux field no phi
rho name of density field no rho
myPatch
{
type fluxCorrectedVelocity;
phi phi;
rho rho;

Note :

If reverse flow is possible or expected use the pressurelnletOutletVelocity condition instead.

25

Boundary Conditions - OpenFOAM-2.3.0

1.20 freestream

This boundary condition provides a free-stream condition. It is a 'mixed’ condition derived
from the inletOutlet condition, whereby the mode of operation switches between fixed (free

stream) value and zero gradient based on the sign of the flux.

Property Description Required Default value

freestreamValue freestream velocity yes

phi flux field name no phi
myPatch
{

type freestream;

phi phi;

26

Boundary Conditions - OpenFOAM-2.3.0

1.21 freestreamPressure

This boundary condition provides a free-stream condition for pressure. It is a zero-gradient

condition that constrains the flux across the patch based on the free-stream velocity.

myPatch
{

type freestreamPressure;

Note :

This condition is designed to operate with a freestream velocity condition

27

Boundary Conditions - OpenFOAM-2.3.0

1.22 inletOutlet

This boundary condition provides a generic outflow condition, with specified inflow for the

case of return flow.

Property Description Required Default value

phi flux field name no phi

inletValue inlet value for reverse flow yes

myPatch

{
type inletOutlet;
phi phi;
inletValue uniform 0;
value uniform 0;

The mode of operation is determined by the sign of the flux across the patch faces.

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): apply the user-specified fixed value

28

Boundary Conditions - OpenFOAM-2.3.0

1.23 inletOutletTotalTemperature

This boundary condition provides an outflow condition for total temperature for use with

supersonic cases, where a user-specified value is applied in the case of reverse flow.

Property Description Required Default value
U velocity field name no U

phi flux field name no phi

psi compressibility field name no psi

gamma heat capacity ration (Cp/Cv) yes

inletValue reverse flow (inlet) value yes

TO static temperature [K] yes

myPatch

{

type

U

phi

psi

gamma
inletValue
TO

value

inletOutletTotalTemperature;
U;

phi;

psi;

gamma;

uniform 0;

uniform 0;

uniform 0;

29

Boundary Conditions - OpenFOAM-2.3.0

1.24 interstitiallnletVelocity

Inlet velocity in which the actual interstitial velocity is calculated by dividing the specified

inletVelocity field with the local phase-fraction.

inlet

{
type interstitialInletVelocity;
inletVelocity uniform (0 0.2 0; // Non-interstitial inlet velocity
alpha alpha.particles; // Name of the phase-fraction field
value uniform (0 0 0);

30

Boundary Conditions - OpenFOAM-2.3.0

1.25 mappedField

This boundary condition provides a self-contained version of the mapped condition. It does
not use information on the patch; instead it holds
thr data locally.

Property Description Required Default value
fieldName name of field to be mapped no this field name
setAverage flag to activate setting of average value yes
average average value to apply if setAverage = yes yes
myPatch
{
type mappedField;
fieldName T; // optional field name
setAverage no; // apply an average value
average 0; // average to apply if setAverage
value uniform 0; // place holder
}
Note :

Since this condition can be applied on a per-field and per-patch basis, it is possible to duplicate
the mapping information. If possible, employ the mapped condition in preference to avoid this
situation, and only employ this condition if it is not possible to change the underlying geometric

(poly) patch type to mapped.

31

Boundary Conditions - OpenFOAM-2.3.0

1.26 mappedFixedInternalValue

This boundary condition maps the boundary and internal values of a neighbour patch field to

the boundary and internal values of *this.

Property Description Required Default value
fieldName name of field to be mapped no this field name
setAverage flag to activate setting of average value yes
average average value to apply if setAverage = yes yes

myPatch
{
type mappedFixedInternalValue;
fieldName T;
setAverage no;
average 0;
value uniform 0;

Note :
This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

32

Boundary Conditions - OpenFOAM-2.3.0

1.27 mappedFixedPushedInternalValue

This boundary condition maps the boundary values of a neighbour patch field to the boundary

and internal cell values of *this.

Property Description Required Default value
fieldName name of field to be mapped no this field name
setAverage flag to activate setting of average value yes
average average value to apply if setAverage = yes yes

myPatch
{
type mappedFixedPushedInternalValue;
fieldName T;
setAverage no;
average 0;
value uniform 0;

Note :
This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

33

Boundary Conditions - OpenFOAM-2.3.0

1.28 mappedFixedValue

This boundary condition maps the value at a set of cells or patch faces back to *this.

The sample mode is set by the underlying mapping engine, provided by the mappedPatchBase

class.
Property Description Required Default value
fieldName name of field to be mapped no this field name
setAverage flag to activate setting of average value yes
average average value to apply if setAverage = yes yes
interpolationScheme type of interpolation scheme no
myPatch
{
type mapped;
fieldName T;
setAverage no;
average 0;

interpolationScheme cell;

value uniform 0;

When employing the nearestCell sample mode, the user must also specify the interpolation
scheme using the interpolationScheme entry.

In case of interpolation (where scheme != cell) the limitation is that there is only one value
per cell. For example, if you have a cell with two boundary faces and both faces sample into the

cell, both faces will get the same value.

Note :

It is not possible to sample internal faces since volume fields are not defined on faces.

34

Boundary Conditions - OpenFOAM-2.3.0

1.29 mappedFlowRate

Describes a volumetric/mass flow normal vector boundary condition by its magnitude as an

integral over its area.
The inlet mass flux is taken from the neighbour region.

The basis of the patch (volumetric or mass) is determined by the dimensions of the flux, phi.

The current density is used to correct the velocity when applying the mass basis.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
neigPhi name of flux field on neighbour mesh yes
myPatch
{
type mappedFlowRate;
phi phi;
rho rho;
neigPhi phi;
value uniform (0 0 0); // placeholder

35

Boundary Conditions - OpenFOAM-2.3.0

1.30 mappedVelocityFluxFixedValue

This boundary condition maps the velocity and flux from a neighbour patch to this patch

Property Description Required Default value

phi flux field name no phi
myPatch
{
type mappedVelocityFlux;
phi phi;
value uniform 0; // place holder

The underlying sample mode should be set to nearestPatchFace or nearestFace

Note :
This boundary condition can only be applied to patches that are of the mappedPolyPatch type.

36

Boundary Conditions - OpenFOAM-2.3.0

1.31 movingWallVelocity

This boundary condition provides a velocity condition for cases with moving walls. In addi-

tion, it should also be applied to 'moving’ walls for moving reference frame (MRF) calculations.

Property Description Required Default value
U velociy field name no U
myPatch
{
type movingWallVelocity;
U U;
value uniform 0; // initial value

37

Boundary Conditions - OpenFOAM-2.3.0

1.32 oscillatingFixed Value

This boundary condition provides an oscillating condition in terms of amplitude and frequency.

zp = (1 + asin(nft))xres + 2o (1.6)

xp @ patch values
Trep : patch reference values
T, : patch offset values
a : amplitude
f : frequency [1/s]
t: time [s]

Property Description Required Default value

refValue reference value yes

offset offset value no 0.0

amplitude oscillation amplitude yes

frequency oscillation frequency yes

myPatch

{
type oscillatingFixedValue;
refvalue uniform 5.0;
offset 0.0;
amplitude constant 0.5;
frequency constant 10;

Note :
The amplitude and frequency entries are DataEntry types, able to describe time varying func-

tions. The example above gives the usage for supplying constant values.

38

Boundary Conditions - OpenFOAM-2.3.0

1.33 outletInlet

This boundary condition provides a generic inflow condition, with specified outflow for the

case of return flow.

Property Description Required Default value

phi flux field name no phi
inletValue inlet value yes
myPatch
{
type outletInlet;
phi phi; // name of flux field (default = phi)
outletValue uniform 0; // reverse flow (inlet) value
value uniform 0; // initial value

The mode of operation is determined by the sign of the flux across the patch faces.

Note :
Sign conventions:
- positive flux (out of domain): apply the user-specified fixed value

- negative flux (into of domain): apply zero-gradient condition

39

Boundary Conditions - OpenFOAM-2.3.0

1.34 outletMappedUniformInlet

This boundary conditon averages the field over the ”outlet” patch specified by name ”outlet-

PatchName” and applies this as the uniform value of the field over this patch.

Property Description Required Default value

outletPatchName name of outlet patch yes

phi flux field name no phi
myPatch
{
type outletMappedUniformInlet;
outletPatchName aPatch;
phi phi;
value uniform 0;

40

Boundary Conditions - OpenFOAM-2.3.0

1.35 outletPhaseMeanVelocity
This boundary condition adjusts the velocity for the given phase to achieve the specified mean

thus causing the phase-fraction to adjust according to the mass flow rate.

Typical usage is as the outlet condition for a towing-tank ship simulation to maintain the

outlet water level at the level as the inlet.

Property Description Required Default value
Umean mean velocity normal to the boundary [m/s] yes
alpha phase-fraction field yes
myPatch
{
type outletPhaseMeanVelocity;
Umean 1.2;
alpha alpha.water;
value uniform (1.2 0 0);

41

Boundary Conditions - OpenFOAM-2.3.0

1.36 partialSlip

This boundary condition provides a partial slip condition. The amount of slip is controlled by

a user-supplied field.

Property Description Required Default value

valueFraction fraction od value used for boundary [0-1] yes

myPatch

{
type partialSlip;
valueFraction uniform 0.1;
value uniform 0;

42

Boundary Conditions - OpenFOAM-2.3.0

1.37 phaseHydrostaticPressure

This boundary condition provides a phase-based hydrostatic pressure condition, calculated as:

Phyd = DPref + pg(a: - xv"ef) (17)

Dhyd : hyrostatic pressure [Pa]

Pref © reference pressure [Pal

Zref : reference point in Cartesian co-ordinates
p : density (assumed uniform)

g : acceleration due to gravity [m/s2]

The values are assigned according to the phase-fraction field:

- 1 apply phyq
- 0: apply a zero-gradient condition

Property Description Required Default value
phaseName phase field name no alpha

rho density field name no rho

pRefValue reference pressure [Pal yes

pRefPoint reference pressure location yes

myPatch
{
type phaseHydrostaticPressure;
phaseName alphal;
rho rho;
pRefValue le5;
pRefPoint (0 0 0);
value uniform 0; // optional initial value

43

Boundary Conditions - OpenFOAM-2.3.0

1.38 pressureDirectedInletOutletVelocity

This velocity inlet/outlet boundary condition is applied to pressure boundaries where the
pressure is specified. A zero-gradient condtion is applied for outflow (as defined by the flux); for

inflow, the velocity is obtained from the flux with the specified inlet direction.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho

inletDirection inlet direction per patch face yes

myPatch

{
type pressureDirectedInletOutletVelocity;
phi phi;
rho rho;

inletDirection wuniform (1 0 0);

value uniform 0;

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): derive from the flux with specified direction

44

Boundary Conditions - OpenFOAM-2.3.0

1.39 pressureDirectedInletVelocity

This velocity inlet boundary condition is applied to patches where the pressure is specified.

The inflow velocity is obtained from the flux with the specified inlet direction” direction.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho

inletDirection inlet direction per patch face yes

myPatch

{
type pressureDirectedInletVelocity;
phi phi;
rho rho;

inletDirection wuniform (1 0 0);

value uniform 0;

Note :
If reverse flow is possible or expected use the pressureDirectedInletOutletVelocityFvPatchVec-

torField condition instead.

45

Boundary Conditions - OpenFOAM-2.3.0

1.40 pressurelnletOutletParSlipVelocity

This velocity inlet/outlet boundary condition for pressure boundary where the pressure is
specified. A zero-gradient is applied for outflow (as defined by the flux); for inflow, the velocity

is obtained from the flux with the specified inlet direction.

A slip condition is applied tangential to the patch.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
U velocity field name no U
myPatch
{
type pressurelnletOutletParSlipVelocity;
value uniform 0;

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): derive from the flux with specified direction

46

Boundary Conditions - OpenFOAM-2.3.0

1.41 pressurelnletOutletVelocity

This velocity inlet/outlet boundary condition is applied to pressure boundaries where the
pressure is specified. A zero-gradient condition is applied for outflow (as defined by the flux); for

inflow, the velocity is obtained from the patch-face normal component of the internal-cell value.

The tangential patch velocity can be optionally specified.

Property Description Required Default value

phi flux field name no phi

tangentialVelocity tangential velocity field no

myPatch

{
type pressurelInletOutletVelocity;
phi phi;

tangentialVelocity uniform (0 O 0);

value uniform 0;

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): derive from the flux in the patch-normal direction

47

Boundary Conditions - OpenFOAM-2.3.0

1.42 pressurelnletUniformVelocity

This velocity inlet boundary condition is applied to patches where the pressure is specified.
The uniform inflow velocity is obtained by averaging the flux over the patch, and then applying

it in the direction normal to the patch faces.

myPatch

{
type pressurelInletUniformVelocity;
value uniform O;

48

Boundary Conditions - OpenFOAM-2.3.0

1.43 pressurelnletVelocity

This velocity inlet boundary condition is applied to patches where the pressure is specified.

The inflow velocity is obtained from the flux with a direction normal to the patch faces.

myPatch
{
type pressurelnletVelocity;
phi phi;
rho rho;
value uniform 0;

Note:
If reverse flow is possible or expected use the pressurelnletOutletVelocityFvPatchVectorField

condition instead.

49

Boundary Conditions - OpenFOAM-2.3.0

1.44 pressureNormallnletOutletVelocity

This velocity inlet/outlet boundary condition is applied to patches where the pressure is spec-
ified. A zero-gradient condition is applied for outflow (as defined by the flux); for inflow, the

velocity is obtained from the flux with a direction normal to the patch faces.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
myPatch
{
type pressureNormalInletOutletVelocity;
phi phi;
rho rho;
value uniform 0;

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): derive from the flux and patch-normal direction

50

Boundary Conditions - OpenFOAM-2.3.0

1.45 rotatingPressurelnletOutletVelocity

This velocity inlet/outlet boundary condition is applied to patches in a rotating frame where
the pressure is specified. A zero-gradient is applied for outflow (as defined by the flux); for

inflow, the velocity is obtained from the flux with a direction normal to the patch faces.

Property Description Required Default value
phi flux field name no phi
tangentialVelocity tangential velocity field no
omega angular velocty of the frame [rad/s] yes
myPatch
{
type rotatingPressureInletOutletVelocity;
phi phi;

tangentialVelocity uniform (0 0 0);
omega 100;

The omega entry is a DataEntry type, able to describe time varying functions.

Note :
Sign conventions:
- positive flux (out of domain): apply zero-gradient condition

- negative flux (into of domain): derive from the flux and patch-normal direction

o1

Boundary Conditions - OpenFOAM-2.3.0

1.46 rotatingTotalPressure

This boundary condition provides a total pressure condition for patches in a rotating frame.

Property Description Required Default value
U velocity field name no U
phi flux field name no phi
rho density field name no none
psi compressibility field name no none
gamma ratio of specific heats (Cp/Cv) yes
pO static pressure reference yes
omega angular velocty of the frame [rad/s|] yes
myPatch
{

type rotatingTotalPressure;

U U;

phi phi;

rho rho;

psi psij;

gamma 1.4;

r0 uniform le5;

omega 100;

The omega entry is a DataEntry type, able to describe time varying functions.

52

Boundary Conditions - OpenFOAM-2.3.0

1.47 rotatingWallVelocity

This boundary condition provides a rotational velocity condition.

Property Description Required Default value
origin origin of rotation in Cartesian co-ordinates yes
axis axis of rotation yes
omega angular velocty of the frame [rad/s] yes

myPatch
{
type rotatingWallVelocity;
origin (0 0 0);
axis (0 0 1);
omega 100;

The omega entry is a DataEntry type, able to describe time varying functions.

93

Boundary Conditions - OpenFOAM-2.3.0

1.48 slip

This boundary condition provides a slip constraint.

myPatch

{
type slip;

54

Boundary Conditions - OpenFOAM-2.3.0

1.49 supersonicFreestream

This boundary condition provides a supersonic free-stream condition.

- supersonic outflow is vented according to 777
- supersonic inflow is assumed to occur according to the Prandtl-Meyer expansion process.

- subsonic outflow is applied via a zero-gradient condition from inside the domain.

Property Description Required Default value
TName Temperature field name no T
pName Pressure field name no p
psiName Compressibility field name no thermo:psi
Ulnf free-stream velocity yes
plnf free-stream pressure yes
TInf free-stream temperature yes
gamma heat capacity ratio (cp/Cv) yes
myPatch
{
type supersonicFreestream;
UInf 500;
pInf led;
TInf 265;
gamma 1.4;

Note:

This boundary condition is ill-posed if the free-stream flow is normal to the boundary.

95

Boundary Conditions - OpenFOAM-2.3.0

1.50 surfaceNormalFixedValue

This boundary condition provides a surface-normal vector boundary condition by its magni-

tude.

Property Description Required Default value

refValue reference value yes
myPatch
{
type surfaceNormalFixedValue;
refvalue -10; // 10 INTO the domain

Note:
Sign conventions:

- the value is positive for outward-pointing vectors

o6

Boundary Conditions - OpenFOAM-2.3.0

1.51 swirlFlowRatelnletVelocity

This boundary condition provides a volumetric- OR mass-flow normal vector boundary con-
dition by its magnitude as an integral over its area with a swirl component determined by the

angular speed, given in revolutions per minute (RPM)

The basis of the patch (volumetric or mass) is determined by the dimensions of the flux, phi.

The current density is used to correct the velocity when applying the mass basis.

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
flowRate flow rate profile yes
rpm rotational speed profile yes
myPatch
{
type swirlFlowRateInletVelocity;
flowRate constant 0.2;
rpm constant 100;

Note:
- the flowRate and rpm entries are DataEntry types, able to describe time varying functions.
The example above gives the usage for supplying constant values.

- the value is positive into the domain

o7

Boundary Conditions - OpenFOAM-2.3.0

1.52 syringePressure

This boundary condition provides a pressure condition, obtained from a zero-D model of the

cylinder of a syringe.

The syringe cylinder is defined by its initial volume, piston area and velocity profile specified
by regions of constant acceleration, speed and deceleration. The gas in the cylinder is described

by its initial pressure and compressibility which is assumed constant, i.e. isothermal expansion/-

compression.

Property Description Required Default value
Ap syringe piston area [m2] yes
Sp syringe piston speed [m/s] yes
Vsl initial syringe volume [m3] yes
tas start of piston acceleration [s] yes
tae end of piston acceleration [s] yes
tds start of piston deceleration [s] yes
tde end of piston deceleration [s] yes
psl initial syringe pressure [Pal yes
psi gas compressibility [m2/s2] yes
ams added (or removed) gas mass [kg] yes
myPatch
{

type syringePressure;

Ap 1.388e-6;

Sp 0.01;

VsI 1.388e-8;

tas 0.001;

tae 0.002;

tds 0.005;

tde 0.006;

psI le5;

psi le-5;

ams 0;

value uniform 0;

o8

Boundary Conditions - OpenFOAM-2.3.0

1.53 timeVaryingMappedFixedValue

This boundary conditions interpolates the values from a set of supplied points in space and
time. Supplied data should be specified in constant/boundaryData/< patchname > where:
- points : pointField with locations
- ddd : supplied values at time ddd

The points should be more or less on a plane since they get triangulated in 2-D.

At startup, this condition generates the triangulation and performs a linear interpolation (tri-

angle it is in and weights to the 3 vertices) for every face centre.

Values are interpolated linearly between times.

Property Description Required Default value
setAverage flag to activate setting of average value yes
perturb perturb points for regular geometries no le-5
fieldTableName alternative field name to sample no this field name
myPatch
{
type timeVaryingMappedFixedValue;
setAverage false;
//perturb 0.0;

//fieldTableName samples;

Note:
Switch on debug flag to have it dump the triangulation (in transformed space) and transform

face centres.

99

Boundary Conditions - OpenFOAM-2.3.0

1.54 totalPressure

This boundary condition provides a total pressure condition. Four variants are possible:

1. incompressible subsonic:
pr =p+ 05U

pr : incompressible total pressure [m2/s2]

p : incompressible reference pressure [m2/s2]

U : velocity

2. compressible subsonic:
pr =p+0.5p|U[?

pr : total pressure [Pal

p : reference pressure [Pa]
p : density [kg/m3]

U : velocity

3. compressible transonic (y <= 1):

pr

P =T 059U

— > pr :p+0.5pU2

pr : total pressure [Pa]
p : reference pressure [Pa]
¥ 1/RT [s2/m2]

4. compressible supersonic (y > 1):

br
(14 0.5¢G|U2) &

~

-1 =1
—>]9T=]9<1+72M2>7

« : ratio of specific heats (Cp/Cv)
pr : total pressure [Pa]

60

(1.8)

(1.10)

(1.11)

(1.12)

(1.13)

Boundary Conditions - OpenFOAM-2.3.0

p : reference pressure [Pa
¢ 1/RT [s2/m?2]
G : coefficient given by %1

The modes of operation are set via the combination of phi, rho, and psi entries:

Mode phi rho psi

incompressible subsonic phi none none

compressible subsonic phi rho none

compressible transonic ~ phi none psi

compressible supersonic phi none psi

Property Description Required Default value
U velocity field name no U

phi flux field name no phi

rho density field name no none

psi compressibility field name no none

gamma ratio of specific heats (Cp/Cv) yes

pO static pressure reference yes
myPatch
{
type totalPressure;
U U;
phi phi;
rho none;
psi none;
gamma 1.4;
r0 uniform le5;

Note:

The default boundary behaviour is for subsonic, incompressible flow.

61

Boundary Conditions - OpenFOAM-2.3.0

1.55 totalTemperature

This boundary condition provides a total temperature condition.

Property Description Required Default value
U Velocity field name no U

phi Flux field name no phi

psi Compressibility field name no thermo:psi

gamma, ratio of specific heats (Cp/Cv) yes

TO reference temperature yes
myPatch
{
type totalTemperature;
TO uniform 300;

62

Boundary Conditions - OpenFOAM-2.3.0

1.56 translatingWallVelocity

This boundary condition provides a velocity condition for translational motion on walls.

Property Description Required Default value
U translational velocity yes
myPatch
{
type translatingWallVelocity;
U (100 0 0);

63

Boundary Conditions - OpenFOAM-2.3.0

1.57 turbulentlInlet
This boundary condition generates a fluctuating inlet condition by adding a random compo-
nent to a reference (mean) field.

n

zp=(1— a):cp_l + a(Tref + SCRMSTref) (1.14)

xp @ patch values

Zrep : reference patch values

n : time level

« : fraction of new random component added to previous time value
Cgrms : RMS coefficient

s : fluctuation scale

Property Description Required Default value
fluctuationScale RMS fluctuation scale (fraction of mean) yes
referenceField reference (mean) field yes
alpha fraction of new random component added to previous no 0.1
myPatch
{
type turbulentInlet;

fluctuationScale 0.1;
referenceField uniform 10;
alpha 0.1;

64

Boundary Conditions - OpenFOAM-2.3.0

1.58 turbulentIntensityKineticEnergylnlet

This boundary condition provides a turbulent kinetic energy condition, based on user-supplied

turbulence intensity, defined as a fraction of the mean velocity:

k, = 1.5I|U|? (1.15)

kp : kinetic energy at the patch
I : turbulence intensity
U : velocity field

In the event of reverse flow, a zero-gradient condition is applied.

Property Description Required Default value

intensity ~ fraction of mean field [0-1] yes

U velocity field name no U
phi flux field name no phi
myPatch
{
type turbulentIntensityKineticEnergyInlet;
intensity 0.05; // 5% turbulence
value uniform 1; // placeholder

65

Boundary Conditions - OpenFOAM-2.3.0

1.59 uniformDensityHydrostaticPressure

This boundary condition provides a hydrostatic pressure condition, calculated as:

Phyd :pref"i_pg(m_xv"ef) (1‘16)

Dhyd : hyrostatic pressure [Pa]

Pref © reference pressure [Pal

Zref : reference point in Cartesian co-ordinates

p : density (assumed uniform)

g : acceleration due to gravity [m/s2]

Property Description Required Default value
rho uniform density [kg/m3] yes
pRefValue reference pressure [Pa] yes
pRefPoint reference pressure location yes

myPatch

{
type
rho
pRefValue
pRefPoint

value

uniformDensityHydrostaticPressure;
rho;

le5;

(00 0);

uniform 0; // optional initial value

66

Boundary Conditions - OpenFOAM-2.3.0

1.60 uniformFixedGradient

This boundary condition provides a uniform fixed gradient condition.

Property Description Required Default value

uniformGradient uniform gradient yes

myPatch
{
type uniformFixedGradient;

uniformGradient constant 0.2;

Note:
The uniformGradient entry is a DataEntry type, able to describe time varying functions. The

example above gives the usage for supplying a constant value.

67

Boundary Conditions - OpenFOAM-2.3.0

1.61 uniformFixedValue

This boundary condition provides a uniform fixed value condition.

Property Description Required Default value

uniformValue uniform value yes

myPatch

{
type uniformFixedValue;
uniformvalue constant 0.2;

Note:
The uniformValue entry is a DataEntry type, able to describe time varying functions. The

example above gives the usage for supplying a constant value.

68

Boundary Conditions - OpenFOAM-2.3.0

1.62 uniformJump

This boundary condition provides a jump condition, using the ¢yclic condition as a base. The

jump is specified as a time-varying uniform value across the patch.

Property Description Required Default value

patchType underlying patch type should be cyclic yes

jumpTable jump value yes

myPatch

{
type uniformJump;
patchType cyclic;
JjumpTable constant 10;

The above example shows the use of a fixed jump of "10’.

Note:
The uniformValue entry is a DataEntry type, able to describe time varying functions. The ex-

ample above gives the usage for supplying a constant value.

69

Boundary Conditions - OpenFOAM-2.3.0

1.63 uniformJumpAMI

This boundary condition provides a jump condition, using the ¢yclicAMI condition as a base.

The jump is specified as a time-varying uniform value across the patch.

Property Description Required Default value

patchType underlying patch type should be cyclicAMI yes

jumpTable jump value yes
myPatch
{
type uniformJumpAMI;
patchType cyclicAMI;
JjumpTable constant 10;

The above example shows the use of a fixed jump of "10’.

Note:
The uniformValue entry is a DataEntry type, able to describe time varying functions. The ex-
ample above gives the usage for supplying a constant value.

The underlying patchType should be set to cyclic.

70

Boundary Conditions - OpenFOAM-2.3.0

1.64 uniformTotalPressure

This boundary condition provides a time-varying form of the uniform total pressure boundary

condition.
Property Description Required Default value
U velocity field name no U
phi flux field name no phi
rho density field name no none
psi compressibility field name no none
gamma ratio of specific heats (Cp/Cv) yes
pressure total pressure as a function of time yes

myPatch

{
type
U
phi
rho
psi
gamma

pressure

uniformTotalPressure;
U;

phi;

rho;

psij

1.4;

uniform 1le5;

The pressure entry is specified as a DataEntry type, able to describe time varying functions.

Note:

The default boundary behaviour is for subsonic, incompressible flow.

71

Boundary Conditions - OpenFOAM-2.3.0

1.65 variableHeightFlowRate

This boundary condition provides a phase fraction condition based on the local flow condi-
tions, whereby the values are constrained to lay between user-specified upper and lower bounds.

The behaviour is described by:

if alpha > upperBound:

- apply a fixed value condition, with a uniform level of the upper bound

if lower bound <= alpha <= upper bound:

- apply a zero-gradient condition

if alpha < lowerBound:

- apply a fixed value condition, with a uniform level of the lower bound

Property Description Required Default value

phi flux field name no phi

lowerBound lower bound for clipping yes

upperBound upper bound for clipping yes

myPatch
{
type variableHeightFlowRate;
lowerBound 0.0;
upperBound 0.9;
value uniform 0;

72

Boundary Conditions - OpenFOAM-2.3.0

1.66 variableHeightFlowRatelnletVelocity
This boundary condition provides a velocity boundary condition for multphase flow based on

a user-specified volumetric flow rate.

The flow rate is made proportional to the phase fraction alpha at each face of the patch and

alpha is ensured to be bound between 0 and 1.

Property Description Required Default value

flowRate volumetric flow rate [m3/s] yes

myPatch

{
type variableHeightFlowRateInletVelocity;
flowRate 0.2;
value uniform (0 0 0); // placeholder

Note:
- the value is positive into the domain
- may not work correctly for transonic inlets

- strange behaviour with potentialFoam since the momentum equation is not solved

73

1.67 waveSurfacePressure

Boundary Conditions - OpenFOAM-2.3.0

This is a pressure boundary condition, whose value is calculated as the hydrostatic pressure

based on a given displacement:

p : density [kg/m3]

p=—pxg*(

g : acceleration due to gravity [m/s2]

¢ : wave amplitude [m)]

(1.17)

The wave amplitude is updated as part of the calculation, derived from the local volumetric

flux.

Property Description Required Default value
phi flux field name no phi

rho density field name no rho

zeta wave amplitude field name no zeta

myPatch
{
type
phi
rho
zeta

value

waveSurfacePressure;

phi;
rho;

zeta;

uniform 0; // place holder

The density field is only required if the flux is mass-based as opposed to volumetric-based.

74

Boundary Conditions - OpenFOAM-2.3.0

1.68 waveTransmissive

This boundary condition provides a wave transmissive outflow condition, based onsolving

DDt(psi, U) = 0 at the boundary.
Pp g
Tp = ——+,/— 1.18
PASH T Vo 19

xp @ patch values

¢p : patch face flux

1y : patch compressibility
Sf : patch face area vector

~ : ratio of specific heats

Property Description Required Default value
phi flux field name no phi
rho density field name no rho
psi compressibility field name no psi

gamma, ratio of specific heats (Cp/Cv) yes

myPatch
{
type waveTransmissive;
phi phi;
psi psi;
gamma 1.4;

75

Boundary Conditions - OpenFOAM-2.3.0

2 Turbulence and thermal boundary conditions

2.1 externalCoupledTemperatureMixed

This boundary condition provides a temperatue interface to an external application. Values

are transferred as plain text files, where OpenFOAM data is written as:

Patch: <patch name>

<magSfl> <valuel> <qDotl> <htcl>

<magSf2> <value2> <qDot2> <htc2>

<magSf3> <valued3> <qDot3> <htc2>

<magSIN> <valueN> <qDotN> <htcN>

and received as the constituent pieces of the ‘mixed’ condition, i.e.

Patch: <patch name>

<valuel> <gradient1> <valueFracionl>

<value2> <gradient2> <valueFracion2>

<value3> <gradient3> <valueFracion3>

<valueN> <gradientN> <valueFracionN>

Data is sent/received as a single file for all patches from the directory
$FOAM_CASE/<commsDir>

At start-up, the boundary creates a lock file, i.e..

OpenFOAM.lock

to signal the external source to wait. During the boundary condition update, boundary

values are written to file, e.g.
<fileName>.out

The lock file is then removed, instructing the external source to take control of the program

execution. When ready, the external program should create the return values, e.g. to file

<fileName>.in

76

and then re-instate the lock file. The boundary condition will then read the return val-

ues, and pass program execution back to OpenFOAM.

Boundary Conditions - OpenFOAM-2.3.0

Property Description Required Default value
commsDir communications directory yes

fileName transfer file name yes

waitInterval interval [s] between file chekes no

timeOut time after which error invoked [s] no 100waitInterval
calcFrequency calculation frequency no 1

log log program control no no

myPatch

{
type externalCoupledTemperature;
commsDir "SFOAM_CASE/comms";
fileName data;
calcFrequency 1;

77

Boundary Conditions - OpenFOAM-2.3.0

2.2 externalWallHeatFluxTemperature

This boundary condition supplies a heat flux condition for temperature on an external wall.
Optional thin thermal layer resistances can be specified through thicknessLayers and kappalLay-

ers entries for the fixed heat transfer coefficient mode.

The condition can operate in two modes:
- fixed heat transfer coefficient: supply h and Ta
- fixed heat flux: supply q

where

h = heat transfer coefficient [W/m2/K]
Ta = ambient temperature [K]

q = heat flux [W/m2]

The thermal conductivity, k, can either be retrieved from the mesh database using the lookup

option, or from a solidT hermo thermophysical package.

Property Description Required Default value
kappa thermal conductivity option yes
q heat flux [W/m2]me yes
Ta ambient temperature [K] yes
h heat transfer coefficient [W/m/K] yes
thicknessLayers list of thickness per layer [m] no

kappaLayers list of thermal conductivities per layer [W/m/K] no

kappaName name of thermal conductivity field yes
myPatch
{
type externalWallHeatFluxTemperature;
kappa fluidThermo; // solidThermo, lookup,
directionalSolidThermo
q uniform 1000;
Ta uniform 300.0;
h uniform 10.0;
thicknessLayers (0.1 0.2 0.3 0.4); // thickness of solid walls
kappalayers (1 2 3 4); // kappa for each solid walls
value uniform 300.0;
kappaName none;

78

Boundary Conditions - OpenFOAM-2.3.0

Note:
- Only supply h and Ta, or ¢ in the dictionary (see above)

- kappa entries can be: fluidThermo, solidThermo or lookup

79

Boundary Conditions - OpenFOAM-2.3.0

2.3 thermalBaffle1D

This BC solves a steady 1D thermal baffle. The solid properties are specify as dictionary.
Optionaly radiative heat flux (Qr) can be incorporated into the balance. Some under-relaxation

might be needed on Qr.
Baffle and solid properties need to be specified on the master side of the baffle.

myPatch_master
{
type compressible::thermalBafflelD<hConstSolidThermoPhysics>;

samplePatch myPatch_slave;

thickness uniform 0.005; // thickness [m]

Qs uniform 100; // heat flux [W/mZ2]
Qr none;

relaxation 0;

// Solid thermo

specie

{
nMoles 1;
molWeight 20;

}

Specifies gradient and temperature such that the equations are the same
on both sides:

- refGradient = zero gradient
- refValue = neighbour value

- mixFraction = nbrKDelta / (nbrKDelta + myKDelta())

where KDelta is heat-transfer coefficient K * deltaCoeffs

transport
{
kappa 1;
}
thermodynamics
{
Hf 0;
Cp 10;
}
equationOfState
{
rho 10;
}
value uniform 300;

myPatch_slave

80

Boundary Conditions - OpenFOAM-2.3.0

type compressible::thermalBafflelD<hConstSolidThermoPhysics>;

samplePatch myPatch_master_master;
Qr none;
relaxation 0;

81

Boundary Conditions - OpenFOAM-2.3.0

2.4 totalFlowRateAdvectiveDiffusive

This BC is used for species inlets. The diffusion and advection fluxes are considered to
calculate the inlet value for the species The massFluxFraction sets the fraction of the flux of

each particular species.

82

Boundary Conditions - OpenFOAM-2.3.0

2.5 turbulentHeatFluxTemperature

Fixed heat boundary condition to specify temperature gradient. Input heat source either

specified in terms of an absolute power [W], or as a flux [W/m2].

myPatch

{
type compressible: :turbulentHeatFluxTemperature;
heatSource flux; // power [W]; flux [W/m2]
q uniform 10; // heat power or flux
kappa fluidThermo; // calculate kappa=alphaEff*thermo.Cp
or none; // name of the radiative flux
value uniform 300; // initial temperature value

83

Boundary Conditions - OpenFOAM-2.3.0

2.6 turbulentTemperatureCoupledBaffleMixed

Mixed boundary condition for temperature, to be used for heat-transfer on back-to-back baf-
fles.Optional thin thermal layer resistances can be specified through thicknessLayers and kap-

paLayers entries.

The thermal conductivity, x, can either be retrieved from the mesh database using the lookup

option, or from a solidT hermo or fluidl hermo thermophysical package.

Specifies gradient and temperature such that the equations are the same on both sides:
- refGradient = zero gradient

- refValue = neighbour value

- mixFraction = nbrKDelta / (nbrKDelta + myKDelta())

where KDelta is heat-transfer coefficient K * deltaCoeffs

Property Description Required Default value
kappa thermal conductivity option yes

kappaName name of thermal conductivity field no T

Tnbr name of the field no

thicknessLayers list of thicknesses per layer [m] no

kappaLayers list of thermal conductivities per layer [W/m/K] no

myPatch
{
type compressible: :turbulentTemperatureCoupledBaffleMixed;
Tnbr T;
kappa lookup;
KappaName kappa;
thicknessLayers (0.1 0.2 0.3 0.4);
kappalayers (1 2 3 4)
value uniform 300;

Needs to be on underlying mapped(Wall)FvPatch.

Note: kappa : heat conduction at patch. Gets supplied how to lookup calculate kappa:
- ’lookup’ : lookup volScalarField (or volSymmTensorField) with name
- fluidThermo’ : use fluidThermo and compressible::RASmodel to calculate kappa

- ’solidThermo’ : use solidThermo kappal()

84

Boundary Conditions - OpenFOAM-2.3.0

- ’directionalSolid Thermo’ directionalKappa/()

85

Boundary Conditions - OpenFOAM-2.3.0

2.7 turbulentTemperatureRadCoupledMixed

Mixed boundary condition for temperature and radiation heat transfer to be used for in mul-
tiregion cases. Optional thin thermal layer resistances can be specified through thicknessLayers
and kappal.ayers entries.

The thermal conductivity, s, can either be retrieved from the mesh database using the lookup

option, or from a solidT hermo or fluidl hermo thermophysical package.

Property Description Required Default value
kappa thermal conductivity option yes

kappaName name of thermal conductivity field no T

Tnbr name of the field no

QrNbr name of the radiative flux in the nbr region no none

Qr name of the radiative flux in this region no none
thicknessLayers list of thicknesses per layer [m] no

kappaLayers list of thermal conductivities per layer [W/m/K] no

myPatch

{
type compressible: :turbulentTemperatureRadCoupledMixed;
Tnbr T;
kappa lookup;
KappaName kappa;
QrNbr Qr; // or none. Name of Qr field on neighbour region
QOr Qr; // or none. Name of Qr field on local region
thicknessLayers (0.1 0.2 0.3 0.4);
kappalayers (L 2 3 4)
value uniform 300;

Needs to be on underlying mapped(Wall)FvPatch.

Note: kappa : heat conduction at patch. Gets supplied how to lookup/calculate kappa:

'lookup’ : lookup volScalarField (or volSymmTensorField) with name

"fluidThermo’ : use fluidThermo and compressible::RASmodel to calculate K

’solidThermo’ : use solidThermo kappa()

"directionalSolidThermo’ directionalKappa()

86

Boundary Conditions - OpenFOAM-2.3.0

2.8 wallHeatTransfer

This boundary condition provides an enthalpy condition for wall heat transfer

Property Description Required Default value

Tinf wall temperature yes

alphaWall thermal diffusivity yes

myPatch

{
type wallHeatTransfer;
Tif uniform 500; //ambient temperature K]
alphaWall uniform 1; // thermal diffusivity [W/m2]
value uniform 300;

87

Boundary Conditions - OpenFOAM-2.3.0

2.9 convectiveHeatTransfer

This boundary condition provides a convective heat transfer coefficient condition

if Re > 500000

0.664Re°‘5Pr0'333/<;p

htc, = 2.1
P L ()
else
0.037Rel-8 Pr0-333
hte, = P (2.2)
L
htcy, : patch convective heat transfer coefficient
Re : Reynolds number
Pr : Prandtl number
kp : thermal conductivity
L : length scale
Property Description Required Default value
L Length scale [m] yes
myPatch
{
type convectiveHeatTransfer;
L 0.1;

88

Boundary Conditions - OpenFOAM-2.3.0

2.10 turbulentMixingLengthDissipationRatelnlet

This boundary condition provides a turbulence dissipation, e (epsilon) inlet condition based

on a specified mixing length. The patch values are calculated using:

0.5 1.5
“w
€= —— 2.3
P L ()
€p : patch epsilon values
C : Model coefficient, set to 0.09
k : turbulence kinetic energy
L : length scale
Property Description Required Default value
mixingLength Length scale [m] yes
phi flux field name no phi
k turbulence kinetic energy field name no k
myPatch
{
type compressible::turbulentMixingLengthDissipationRateInlet;
mixingLength 0.005;
value uniform 200; // placeholder

Note:

In the event of reverse flow, a zero-gradient condition is applied

89

Boundary Conditions - OpenFOAM-2.3.0

2.11 turbulentMixingLengthFrequencylnlet

This boundary condition provides a turbulence specific dissipation, w (omega) inlet condition

based on a specified mixing length. The patch values are calculated using:

k0'5
Wp = Go3L (2.4)
o
wp : patch omega values
Cy : Model coefficient, set to 0.09
k : turbulence kinetic energy
L : length scale
Property Description Required Default value
mixingLength Length scale [m] yes
phi flux field name no phi
k turbulence kinetic energy field name no k
myPatch
{
type compressible: :turbulentMixingLengthFrequencyInlet;
mixingLength 0.005;
value uniform 200; // placeholder

Note:

In the event of reverse flow, a zero-gradient condition is applied

90

Boundary Conditions - OpenFOAM-2.3.0

2.12 atmBoundaryLayerInletEpsilon

This boundary condition specifies an inlet value for the turbulence dissipation, e (epsilon),
appropriate for atmospheric boundary layers (ABL), and designed to be used in conjunction

with the ABLInletVelocity inlet velocity boundary condition.

*\3
K(z —z4+ 29)
U* : frictional velocity
K : Karman’s constant
z : vertical co-ordinate [m]
2g : surface roughness length [m]
Zg + minimum vlaue in z direction [m]
and:
UTef

U =K)
In (”ZO)
Uyey : reference velocity at Z,.p [m/s]

Zyey : reference height [m]

Property Description Required Default value
z vertical co-ordinate [m] yes

kappa Karman’s constanat no 0.41

Uref reference velocity [m/s] yes

Href reference height [m] yes

70 surface roughness length [m] yes

zGround minimum z co-ordinate [m] yes

myPatch
{
type atmBoundaryLayerInletEpsilon;
z 1.0;
kappa 0.41;
Uref 1.0;
Href 0.0;
z0 uniform 0.0;

91

Boundary Conditions - OpenFOAM-2.3.0

zGround uniform 0.0;

Reference:

D.M. Hargreaves and N.G. Wright, ”On the use of the k-epsilon model in commercial CFD
software to model the neutral atmospheric boundary layer”, Journal of Wind Engineering and
Industrial Aerodynamics 95(2007), pp 355-369.

92

Boundary Conditions - OpenFOAM-2.3.0

2.13 atmBoundaryLayerInletVelocity

This boundary condition specifies a velocity inlet profile appropriate for atmospheric boundary
layers (ABL). The profile is derived from the friction velocity, flow direction and the direction

of the parabolic co-ordinate z.

U* zZ— zg+ 20
U= —iIn|—2 = 2.7
in (27 7)
U* . frictional velocity
K : Karman’s constant
z @ vertical co-ordinate [m]
zp : surface roughness length [m]
Zg : minimum vlaue in z direction [m]
and:
U
Ur=K— " (2.8)

In (M)

Upes : reference velocity at Z,er [m/s]
Zyey + reference height [m]

Reference:
D.M. Hargreaves and N.G. Wright, ”On the use of the k-epsilon model in commercial CFD
software to model the neutral atmospheric boundary layer”, Journal of Wind Engineering and
Industrial Aerodynamics 95(2007), pp 355-369.

Property Description Required Default value
n flow direction yes

z vertical co-ordinate [m] yes

kappa Karman’s constanat no 0.41

Uref reference velocity [m/s] yes

Href reference height [m] yes

z0 surface roughness length [m] yes

zGround minimum z co-ordinate [m] yes

myPatch

93

Boundary Conditions - OpenFOAM-2.3.0

type atmBoundaryLayerInletVelocity;
n (01 0);

zZ 1.0;

kappa 0.41;

Uref 1.0;

Href 0.0;

z0 uniform 0.0;

zGround uniform 0.0;

Note:
D.M. Hargreaves and N.G. Wright recommend Gamma epsilon in the k-epsilon model should
be changed from 1.3 to 1.11 for consistency. The roughness height (Er) is given by Er = 20 z0

following the same reference.

94

Boundary Conditions - OpenFOAM-2.3.0

2.14 turbulentHeatFluxTemperature

Fixed heat boundary condition to specify temperature gradient. Input heat source either

specified in terms of an absolute power [W], or as a flux [W/m2].

Property Description Required Default value

heatSource heat source type: fluz[W/m2] or power[W] yes

q heat source value yes
alphaEff turbulent thermal diffusivity field name yes
myPatch
{
type turbulentHeatFluxTemperature;
heatSource flux;
q uniform 10;
alphaEff alphaEff;
value uniform 300; // place holder
}
Note :

- it is assumed that the units of aeyy are [kg/m/s]
- the specific heat capcaity is read from the transport dictionary entry Cp0

95

3 Wall Functions

3.1 compressible::alphatJayatillekeWallFunction

Boundary Conditions - OpenFOAM-2.3.0

This boundary condition provides a thermal wall function for turbulent thermal diffusivity

(usually ;) based on the Jayatilleke model.

Property Description

Required Default value

Prt turbulent Prandtl number no 0.85
Cmu model coefficient no 0.09
kappa Von Karman constant no 0.41
E model coefficient no 9.8

myPatch

{

type
Prt
kappa
E

value

alphatJayatillekeWallFunction;

0.85;
0.41;
9.8;

uniform 0; // optional value entry

96

Boundary Conditions - OpenFOAM-2.3.0

3.2 compressible::alphatWallFunction

This boundary condition provides a turbulent thermal diffusivity conditon
when using wall functions

- replicates OpenFOAM v1.5 (and earlier) behaviour

The turbulent thermal diffusivity calculated using:

Mt
ap = —— 3.1
t PT‘t ()
oy : turblence thermal diffusivity
ut + turblence viscosity
Pr; : turblent Prandtl number
Property Description Required Default value
mut turbulence viscosity field name no mut
Prt turbulent Prandtl number no 0.85
myPatch
{
type alphatWallFunction;
mut mut;
Prt 0.85;
value uniform 0; // optional value entry

97

Boundary Conditions - OpenFOAM-2.3.0

3.3 compressible::epsilonLowReWallFunction
This boundary condition provides a turbulence dissipation wall function condition for low-

and high-Reynolds number turbulent flow cases.

The condition can be applied to wall boundaries, whereby it inserts near wall epsilon values

directly into the epsilon equation to act as a constraint.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over

y+ value derived from kappa and E.

Property Description Required Default value
Cmu model coeflicient no 0.09

kappa Von Karman constant no 0.41

E model coefficient no 9.8

myPatch

{
type epsilonLowReWallFunction;

98

Boundary Conditions - OpenFOAM-2.3.0

3.4 compressible::epsilonWallFunction

This boundary condition provides a turbulence dissipation wall function condition for high

Reynolds number, turbulent flow cases.

The condition can be applied to wall boundaries, whereby it
- calculates € and G

- inserts near wall epsilon values directly into the epsilon equation to act as a constraint

€ : turblence dissipation field

G : turblence generation field

Property Description Required Default value
Cmu model coefficient no 0.09
kappa Von Karman constant no 0.41
E model coefficient no 9.8
myPatch
{
type compressible::epsilonWallFunction;

99

Boundary Conditions - OpenFOAM-2.3.0

3.5 fWallFunction

This boundary condition provides a turbulence damping function, f, wall function condition

for low- and high Reynolds number, turbulent flow cases

The model operates in two modes, based on the computed laminar-to-turbulent switch-over

y+ value derived from kappa and E.

Property Description Required Default value
Cmu model coefficient no 0.09
kappa Von Karman constant no 0.41
E model coefficient no 9.8
myPatch
{
type fWallFunction;

100

Boundary Conditions - OpenFOAM-2.3.0

3.6 compressible::kLowReWallFunction

This boundary condition provides a turbulence kinetic energy wall function condition for low-

and high-Reynolds number turbulent flow cases.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over

y+ value derived from kappa and E.

Property Description Required Default value
Cmu model coefficient no 0.09

kappa Von Karman constant no 0.41

E model coefficient no 9.8

Ceps2 model coefficient no 1.9

myPatch

{ type kLowReWallFunction;

}

101

Boundary Conditions - OpenFOAM-2.3.0

3.7 compressible::kqRWallFunction

This boundary condition is applied to turbulence k, ¢, and R when using wall functions, and

simply enforces a zero-gradient condition.

myPatch

{
type compressible: :kgRWallFunction;

102

Boundary Conditions - OpenFOAM-2.3.0

3.8 compressible::mutkRoughWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions
for rough walls, based on turbulence kinetic energy. The condition manipulates the E parameter

to account for roughness effects.

Parameter ranges
- roughness height = sand-grain roughness (0 for smooth walls)

- roughness constant = 0.5-1.0

Property Description Required Default value
Ks sand-grain roughness height yes
Cs roughness constant yes
myPatch
{
type mutkRoughWallFunction;
Ks uniform 0;
Cs uniform 0.5;

103

Boundary Conditions - OpenFOAM-2.3.0

3.9 compressible::mutkWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions,
based on turbulence kinetic energy.

- replicates OpenFOAM v1.5 (and earlier) behaviour

myPatch

{
type mutkWallFunction;

104

Boundary Conditions - OpenFOAM-2.3.0

3.10 compressible::mutLowReWallFunction

This boundary condition provides a turbulent viscosity condition for use with low Reynolds

number models. It sets nut to zero, and provides an access function to calculate y+.

myPatch

{
type mutLowReWallFunction;

105

Boundary Conditions - OpenFOAM-2.3.0

3.11 compressible::mutURoughWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions

for rough walls, based on velocity.

Property Description Required Default value

roughnessHeight roughness height yes

roughnessConstant roughness constanr yes

roughnessFactor scaling factor yes
myPatch
{

type mutURoughWallFunction;

roughnessHeight le-5;
roughnessConstant 0.5;

roughnessFactor 1;

106

Boundary Conditions - OpenFOAM-2.3.0

3.12 compressible::mutUSpaldingWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions
for rough walls, based on velocity, using Spalding’s law to give a continuous nut profile to the
wall (y+ = 0)

1 1
yt=ut + I exp(ku™) — 1 — ku™ — 0.5(ku™)? — g(mﬁ)?’ (3.2)

T : non-dimensional position

Yy
u™ : non-dimensional velocity

% : Von Karman constant

myPatch

{
type mutUSpaldingWallFunction;

107

Boundary Conditions - OpenFOAM-2.3.0

3.13 compressible::mutUWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions,

based on velocity.

myPatch

{
type mutUWallFunction;

108

Boundary Conditions - OpenFOAM-2.3.0

3.14 compressible::mutWallFunction

This boundary condition provides a turbulent viscosity condition when using wall functions,
based on turbulence kinetic energy.

- replicates OpenFOAM v1.5 (and earlier) behaviour

myPatch

{
type mutWallFunction;

109

Boundary Conditions - OpenFOAM-2.3.0

3.15 compressible::omegaWallFunction

This boundary condition provides a wall function constraint on turbulnce specific dissipation,

omega. The values are computed using:

W= Sqrt(wgis + wl20g) (33)

Wyis © Omega in viscous region

Wiog © omega in logarithmic region

Menter, F., Esch, T.
”Elements of Industrial Heat Transfer Prediction” 16th Brazilian Congress of Mechanical Engi-
neering (COBEM), Nov. 2001

Property Description Required Default value
Cmu model coefficient no 0.09

kappa Von Karman constant no 0.41

E model coefficient no 9.8

betal model coefficient no 0.075

myPatch
{

type compressible: :omegaWallFunction;

110

Boundary Conditions - OpenFOAM-2.3.0

3.16 compressible::v2WallFunction
This boundary condition provides a turbulence stress normal to streamlines wall function con-

dition for low- and high-Reynolds number, turbulent flow cases.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over

y+ value derived from kappa and E.

Property Description Required Default value
Cmu model coefficient no 0.09

kappa Von Karman constant no 0.41

E model coefficient no 9.8

myPatch

{
type v2WallFunction;

111

Boundary Conditions - OpenFOAM-2.3.0

3.17 incompressible::alphatJayatilleke WallFunction

This boundary condition provides a kinematic turbulent thermal conductivity for using wall

functions, using the Jayatilleke P’ function.

Property Description Required Default value
Prt turbulent Prandtl number no 0.85
Cmu model coefficient no 0.09
kappa Von Karman constant no 0.41
E model coefficient no 9.8
myPatch
{
type alphatJayatillekeWallFunction;

Note:

The units of kinematic turbulent thermal conductivity are [m2/s]

112

Boundary Conditions - OpenFOAM-2.3.0

3.18 incompressible::epsilonLowReWallFunction
This boundary condition provides a turbulence dissipation wall function condition for low-

and high-Reynolds number turbulent flow cases.

The condition can be applied to wall boundaries, whereby it inserts near wall epsilon values

directly into the epsilon equation to act as a constraint.

The model operates in two modes, based on the computed laminar-to-turbulent switch-over

y+ value derived from kappa and E.

Property Description Required Default value
Cmu model coeflicient no 0.09

kappa Von Karman constant no 0.41

E model coefficient no 9.8

myPatch

{
type epsilonLowReWallFunction;

113

Boundary Conditions - OpenFOAM-2.3.0

3.19 incompressible::epsilonWallFunction

This boundary condition provides a turbulence dissipation wall function condition for high

Reynolds number, turbulent flow cases.

The condition can be applied to wall boundaries, whereby it
- calculates € and G

- inserts near wall epsilon values directly into the epsilon equation to act as a constraint

€ : turblence dissipation field

G : turblence generation field

Property Description Required Default value
Cmu model coefficient no 0.09
kappa Von Karman constant no 0.41
E model coefficient no 9.8
myPatch
{
type epsilonWallFunction;

114

Boundary Conditions - OpenFOAM-2.3.0

3.20 incompressible::kqRWallFunction

This boundary condition is applied to turbulence k, ¢, and R when using wall functions, and

simply enforces a zero-gradient condition.

myPatch

{
type kgRWallFunction;

115

Boundary Conditions - OpenFOAM-2.3.0

3.21 incompressible::nutk AtmRoughWallFunction

This boundary condition provides a turbulent kinematic viscosity for atmospheric velocity pro-
files. It is desinged to be used in conjunction with the atmBoundaryLayerInlet Velocity boundary

condition. The values are calculated using:

U= frachKln(z + zo) (3.4)
20
Uy : frictional velocity
K : Von Karman’s constant
zp : surface roughness length
z : vertical co-ordinate
Property Description Required Default value
z0 surface roughness length yes

myPatch

{
type nutkAtmRoughWallFunction;
z0 uniform 0;

116

Boundary Conditions - OpenFOAM-2.3.0

3.22 incompressible::nutkRoughWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall
functions for rough walls, based on turbulence kinetic energy. The condition manipulates the E

parameter to account for roughness effects.

Parameter ranges
- roughness height = sand-grain roughness (0 for smooth walls)

- roughness constant = 0.5-1.0

Property Description Required Default value
Ks sand-grain roughness height yes
Cs roughness constant yes
myPatch
{
type nutkRoughWallFunction;
Ks uniform 0;
Cs uniform 0.5;

117

Boundary Conditions - OpenFOAM-2.3.0

3.23 incompressible::nutkWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall
functions, based on turbulence kinetic energy.

- replicates OpenFOAM v1.5 (and earlier) behaviour

myPatch

{
type nutkWallFunction;

118

Boundary Conditions - OpenFOAM-2.3.0

3.24 incompressible::nutLowReWallFunction

This boundary condition provides a turbulent kinematic viscosity condition for use with low

Reynolds number models. It sets nut to zero, and provides an access function to calculate y+.

myPatch

{
type nutLowReWallFunction;

119

Boundary Conditions - OpenFOAM-2.3.0

3.25 incompressible::nutURoughWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall

functions for rough walls, based on velocity.

Property Description Required Default value

roughnessHeight roughness height yes

roughnessConstant roughness constanr yes

roughnessFactor scaling factor yes
myPatch
{

type nutURoughWallFunction;

roughnessHeight le-5;
roughnessConstant 0.5;

roughnessFactor 1;

120

Boundary Conditions - OpenFOAM-2.3.0

3.26 incompressible::nutUSpaldingWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall
functions for rough walls, based on velocity, using Spalding’s law to give a continuous nut profile

to the wall (y+ = 0)

1 1
yt=ut + I exp(ku™) — 1 — ku™ — 0.5(ku™)? — g(mﬁ)?’ (3.5)

yT : non-dimensional position
u™ : non-dimensional velocity

% : Von Karman constant

myPatch

{
type nutUSpaldingWallFunction;

121

Boundary Conditions - OpenFOAM-2.3.0

3.27 incompressible::nutUTabulated WallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall
functions. As input, the user specifies a look-up table of U+ as a function of near-wall Reynolds
number. The table should be located in the SFOAM_CASE/constant folder.

Property Description Required Default value

uPlusTable U+ as a function of Re table name yes

myPatch

{
type nutTabulatedWallFunction;
uPlusTable myUPlusTable;

Note:
The tables are not registered since the same table object may be used for more than one patch.

122

Boundary Conditions - OpenFOAM-2.3.0

3.28 incompressible::nutUWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall

functions, based on velocity.

myPatch

{
type nutUWallFunction;

123

Boundary Conditions - OpenFOAM-2.3.0

3.29 incompressible::nutWallFunction

This boundary condition provides a turbulent kinematic viscosity condition when using wall
functions, based on turbulence kinetic energy.

- replicates OpenFOAM v1.5 (and earlier) behaviour

myPatch

{
type nutWallFunction;

124

Boundary Conditions - OpenFOAM-2.3.0

4 Radiation boundary conditions

4.1 greyDiffusiveRadiationMixed

This boundary condition provides a grey-diffuse condition for radiation intensity, I, for use
with the finite-volume discrete-ordinates model (fvDOM), in which the radiation temperature is

retrieved from the temperature field boundary condition.

Property Description Required Default value

T temperature field name no T

emissivityMode emissivity mode: solidThermo or lookup yes

myPatch

{
type greyDiffusiveRadiation;
T T;

emissivityMode solidThermo;

value uniform 0;

125

Boundary Conditions - OpenFOAM-2.3.0

4.2 greyDiffusiveViewFactor

This boundary condition provides a grey-diffuse condition for radiative heat flux, Qr, for use

with the view factor model

Property Description Required Default value

Qro external radiative heat flux yes

emissivityMode emissivity mode: solidThermo or lookup yes

myPatch

{
type greyDiffusiveRadiationViewFactor;
Qro uniform 0;

emissivityMode solidThermo;

value uniform 0;

126

Boundary Conditions - OpenFOAM-2.3.0

4.3 MarshakRadiation

A ’mixed’ boundary condition that implements a Marshak condition for the incident radiation

field (usually written as G)

The radiation temperature is retrieved from the mesh database, using a user specified tem-

perature field name.

Property Description Required Default value
T temperature field name no T
myPatch
{
type MarshakRadiation;
T T;
value uniform O;

Note:

In the event of reverse flow, a zero-gradient condition is applied

127

Boundary Conditions - OpenFOAM-2.3.0

4.4 MarshakRadiationFixedTemperature

A ’mixed’ boundary condition that implements a Marshak condition for the incident radiation

field (usually written as G)

The radiation temperature field across the patch is supplied by the user using the T'rad entry.

Property Description Required Default value

T temperature field name no T

myPatch

{
type MarshakRadiationFixedTemperature;
Trad uniform 1000; // radiation temperature field
value uniform 0; // place holder

Note:

In the event of reverse flow, a zero-gradient condition is applied

128

Boundary Conditions - OpenFOAM-2.3.0

4.5 wideBandDiffusiveRadiation

This boundary condition provides a wide-band, diffusive radiation condition, where the patch

temperature is specified.

Property Description Required Default value
T temperature field name no T
myPatch
{
type wideBandDiffusiveRadiation;
value uniform 0;

129

	차례
	Derived boundary conditions
	activeBaffleVelocity
	activePressureForceBaffleVelocity
	advective
	codedFixedValue
	codedMixed
	cylindricalInletVelocity
	cylindricalInletVelocity
	externalCoupledMixed
	fan
	fanPressure
	fixedFluxPressure
	fixedInternalValue
	fixedJump
	fixedJumpAMI
	fixedMean
	fixedNormalSlip
	fixedPressureCompressibleDensity
	flowRateInletVelocity
	fluxCorrectedVelocity
	freestream
	freestreamPressure
	inletOutlet
	inletOutletTotalTemperature
	interstitialInletVelocity
	mappedField
	mappedFixedInternalValue
	mappedFixedPushedInternalValue
	mappedFixedValue
	mappedFlowRate
	mappedVelocityFluxFixedValue
	movingWallVelocity
	oscillatingFixedValue
	outletInlet
	outletMappedUniformInlet
	outletPhaseMeanVelocity
	partialSlip
	phaseHydrostaticPressure
	pressureDirectedInletOutletVelocity
	pressureDirectedInletVelocity
	pressureInletOutletParSlipVelocity
	pressureInletOutletVelocity
	pressureInletUniformVelocity
	pressureInletVelocity
	pressureNormalInletOutletVelocity
	rotatingPressureInletOutletVelocity
	rotatingTotalPressure
	rotatingWallVelocity
	slip
	supersonicFreestream
	surfaceNormalFixedValue
	swirlFlowRateInletVelocity
	syringePressure
	timeVaryingMappedFixedValue
	totalPressure
	totalTemperature
	translatingWallVelocity
	turbulentInlet
	turbulentIntensityKineticEnergyInlet
	uniformDensityHydrostaticPressure
	uniformFixedGradient
	uniformFixedValue
	uniformJump
	uniformJumpAMI
	uniformTotalPressure
	variableHeightFlowRate
	variableHeightFlowRateInletVelocity
	waveSurfacePressure
	waveTransmissive

	Turbulence and thermal boundary conditions
	externalCoupledTemperatureMixed
	externalWallHeatFluxTemperature
	thermalBaffle1D
	totalFlowRateAdvectiveDiffusive
	turbulentHeatFluxTemperature
	turbulentTemperatureCoupledBaffleMixed
	turbulentTemperatureRadCoupledMixed
	wallHeatTransfer
	convectiveHeatTransfer
	turbulentMixingLengthDissipationRateInlet
	turbulentMixingLengthFrequencyInlet
	atmBoundaryLayerInletEpsilon
	atmBoundaryLayerInletVelocity
	turbulentHeatFluxTemperature

	Wall Functions
	compressible::alphatJayatillekeWallFunction
	compressible::alphatWallFunction
	compressible::epsilonLowReWallFunction
	compressible::epsilonWallFunction
	fWallFunction
	compressible::kLowReWallFunction
	compressible::kqRWallFunction
	compressible::mutkRoughWallFunction
	compressible::mutkWallFunction
	compressible::mutLowReWallFunction
	compressible::mutURoughWallFunction
	compressible::mutUSpaldingWallFunction
	compressible::mutUWallFunction
	compressible::mutWallFunction
	compressible::omegaWallFunction
	compressible::v2WallFunction
	incompressible::alphatJayatillekeWallFunction
	incompressible::epsilonLowReWallFunction
	incompressible::epsilonWallFunction
	incompressible::kqRWallFunction
	incompressible::nutkAtmRoughWallFunction
	incompressible::nutkRoughWallFunction
	incompressible::nutkWallFunction
	incompressible::nutLowReWallFunction
	incompressible::nutURoughWallFunction
	incompressible::nutUSpaldingWallFunction
	incompressible::nutUTabulatedWallFunction
	incompressible::nutUWallFunction
	incompressible::nutWallFunction

	Radiation boundary conditions
	greyDiffusiveRadiationMixed
	greyDiffusiveViewFactor
	MarshakRadiation
	MarshakRadiationFixedTemperature
	wideBandDiffusiveRadiation

