OKUCC *OpenFOAM Korea User's Community Conference*

THE MODELING OF RISING BUBBLE PAIR USING ADAPTIVE MESH REFINEMENT

YuSin Jeong, K. Nandakumar Chandran, ManYeong Ha, JuneKee Min

Presented by, YuSin Jeong Master Student School of Mechanical Engineering Pusan National University

Large Scale Computational Thermo-Fluid Dynamics Lab.

MOTIVATIONS

❑ **Background**

- ➢ Multiphase phenomenas are prevalent in nature (e.g., breaking waves, cavitation, droplet generation) and have been extensively applied in engineering fields.
- \triangleright This type of multiphase flow, known for enhancing heat transfer through nucleate boiling, is important in industrial settings but challenging to investigate due to the factors involved.
- ➢ Understanding buoyancy-induced bubbly flow is problematic because it involves mass transfer, bubble interactions, and interfacial processes.

MOTIVATIONS

❑ **Previous studies**

❑ **RESEARCH GAP**

- 1. Unlike previous studies, which focused on in-lined conditions, we focused on geometrically eccentric configuration.
- 2. Developing the theoretical model to predict the behavior of the trailing bubble.

INTRODUCTION

❑ **Problem Definition**

 \triangleright Numerical domain

Fig 3. Numerical domain used to solve the GEs

- Initial vertical displacement(S) is fixed as 6 *R*
- To neglect wall effect, enough widths were considered.
- *ε*, which is the eccentricity between bubbles, is the major parameter of the present study.

 \triangleright Considering bubble shape [4]

Fig 4. Isolated bubble deformation regime map [3]

- $Ga = \frac{\rho \sqrt{gRR}}{r}$ $\frac{\overline{gR}R}{\mu}$, $Bo = \frac{\rho gR^2}{\sigma}$ $\frac{gR^2}{\sigma}$, $Mo = Bo^3/Ga^4$
- To simplify problem, we consider only area where bubble shape can be maintained as sphere.
- To investage the coalescence condition, we studied under range of *Ga* < 20, *Bo* < 0.5

❑ **Brief introduction for InterFoam solver**

• Volume of Fluid (VoF) model [5]

 α is volume fraction (Indicator Function)

$$
\alpha = \frac{\int_{\nu o l \to \partial x^3} \alpha_l \, d\nu o l}{\int_{\nu o l \to \partial x^3} (\alpha_l + \alpha_g) \, d\nu o l}
$$

Where,

$$
v_c = \min[C_\alpha \, |\vec{v}| \, , \max(|\vec{v}|)] \, \frac{\nabla \alpha}{|\nabla \alpha|}
$$

Here,

 $\alpha = 1$ corresponds to water phase $\alpha = 0$ corresponds to air phase

 $0 \leq \alpha \leq 1$ for interface

Estimation of local fluid properties : A weighted mixture of the physical properties of fluids

 $\rho = \rho_{\rm l} \alpha + \rho_{\rm g} (1 - \alpha)$, $\mu = \mu_l \alpha + \mu_g (1 - \alpha)$

❑ **Brief introduction for Adaptive Mesh Refinement (dynamicMeshDict)**

Fig 5. damBreakWithObstacle Tutorial

• From 2 weeks to 8 hours

Refinement

Refinement

Fig 6. A rising bubble with AMR Fig 9. Results of the grid independency study

❑ **Postprocessing with image processing technique**

From Eulerian data to Lagrangian data

09/27/2024 The modeling of rising bubble pair using adaptive mesh refinement 7/13

❑ **Inherent problem of VOF & AMR**

Target bubble sizes & initial AMR grid should be well-matched.

Fig 12. The single bubble terminal velocity from Kusuno et al. [5]

- 1. CFD shows step-like results
- 2. Secure the ratio between the bubble and initial grids in fewer grids as much as possible
- 3. Applying this ratio to the other cases by changing the domain sizes

Fig 13. The single bubble validation compared with Kusuno et al.[6]

- To validate the capability of numerical schemes, validation was done about the terminal velocity of a single bubble.
- The single bubble results are well matched to the experimental result from the previous study [Kusuno et al. 2019]
- Trivial errors could originate from the process of bubble generation.

❑ **Bubble pair validation [Kusuno et al. 2019]**

❑ **Kirchhoff equation(Purpose of calculating Drag/Lift)**

➢ Dynamic Reference Coordinate [7]

Basic concept: Expression of movement of a rigid body in flexible coordinate

Advantage: Particularly in fluid dynamics, convenience to express **added mass force**

Major usage: Analysis of the movement of particles in quiescent fluid

Equation of motion in each direction

$$
i = \xi \qquad (A_{\xi\xi} + m_{\xi\xi}^{\text{univ}}) \frac{dU_{\xi}}{dt} - (A_{\eta\eta} + m_{\eta\eta}^{\text{univ}}) U_{\eta} \hat{q}_{\zeta} + (A_{\zeta\zeta} + m_{\zeta\zeta}^{\text{univ}}) U_{\zeta} \hat{q}_{\eta} = F_{\xi}
$$

\n
$$
i = \eta \qquad (A_{\eta\eta}^{\text{univ}} + m_{\eta\eta}^{\text{univ}}) \frac{dU_{\eta}}{dt} + (A_{\xi\xi} + m_{\zeta\xi}^{\text{univ}}) U_{\xi}\Omega_{\zeta} - (A_{\zeta\zeta} + m_{\zeta\zeta}^{\text{univ}}) U_{\zeta}\hat{q}_{\xi} = F_{\eta}
$$

\n
$$
i = \zeta \qquad (A_{\zeta\zeta}^{\text{univ}} + m_{\zeta\zeta}^{\text{univ}}) \frac{dU_{\zeta}}{dt} - (A_{\xi\xi} + m_{\zeta\xi}^{\text{univ}}) U_{\xi}\Omega_{\eta} + (A_{\eta\eta} + m_{\zeta\eta}^{\text{univ}}) U_{\eta}\Omega_{\xi} = F_{\zeta}
$$

Major assumptions

- 1. Bubble is sphere
- 2. The mass of bubbles can be negligible.
- 3. Bubble always moves on ξ direction

$$
i = \xi \qquad (A_{\xi\xi}) \frac{dU_{\xi}}{dt} = F_{\xi,B} + F_{\xi,D}
$$

$$
i = \eta \qquad (A_{\xi\xi}) U_{\xi}\Omega_{\zeta} = F_{\eta,B} + F_{\eta,L}
$$

$$
i = \zeta \qquad - (A_{\xi\xi}) U_{\xi}\Omega_{\eta} = F_{\zeta,B} + F_{\zeta,L}
$$

Assumtion for bubble shape : $\chi = 1$

(Added mass) $A_{\xi\xi} = C_m \rho V$, $C_m = 0.62 \chi - 0.12$ [8], [9]

Assumtion for simplicity : $\zeta - axis$ is always placed on *xz* plane (Rotation rate for ξ) $\Omega_{\xi} \neq \frac{d\phi}{dt}$ $\frac{d\phi}{dt}$ gos θ (Rotation rate for ζ) $\Omega_{\zeta} = -\frac{d\theta}{dt}$ (Rotation rate for η) $\Omega_{\eta} = \frac{d\phi}{dt}$ $\frac{d\psi}{dt}$ sin θ $C_D =$ dt F_D 1 $\frac{1}{2} \rho A U_{\infty}^2$ $C_L =$ F_L 1 $\frac{1}{2}\rho A U_{\infty}^2$ Rotation rate of y-axis

RESULTS AND DISCUSSIONS

\Box **Dynamics in pure water** $(Mo = g\mu^4(\rho_l - \rho_g)/\sigma^3\rho_l^2 = 2.86 \text{ e-11})$

09/27/2024 The modeling of rising bubble pair using adaptive mesh refinement 11/13

RESULTS AND DISCUSSIONS

❑ **Lagrangian perspective dynamics modeling**

Fig 19. Comparison between the numerical and theoretical results

CONCLUSION

SUMMARY :

- □ Dynamics of bubbles (Ga < 20, Bo < 0.5) were studied numerically.
- □ Numerical results are validated against the reported experiment both qualitatively and quantitatively.
- ❑ Using the Kirchhoff equation, the lift forces have been tracked reversely.
- \Box In the pure water column, the C_L and Δy were investigated.
- □ The movement of trailing bubble have been modeled using oseen's flow, however, it shows 20 % from the numerical observation.

HOME TAKE MESSAGES :

- \Box In the certain scenario, the AMR technique can reduce computational cost drastically.
- \Box With AMR, the initial grid has to be determined carefully.
- \Box Drag / Lift force can be estimated by the rigid body's velocity.

REFERENCES

- 1) Feng, Xin, et al. "Bubble induced turbulence model improved by direct numerical simulation of bubbly flow." Chemical Engineering Journal 377 **(2019): 120001.**
- 2) Zhang, J., Ni, M.J. and Magnaudet, J., 2021. Three-dimensional dynamics of a pair of deformable bubbles rising initially in line. Part 1. Moderately inertial regimes. *Journal of Fluid Mechanics*, *920***, p.A16**.
- 3) Tripathi, M.K., Sahu, K.C. and Govindarajan, R., 2015. Dynamics of an initially spherical bubble rising in quiescent liquid. *Nature communications*, *6***(1), p.6268**.
- 4) Hirt, C., and B. Nichols. 1981. "Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries." *Journal of Computational Physics* **39 (1): 201–225**
- 5) Brackbill, J. U., D. B. Kothe, and C. Zemach. 1992. "A Continuum Method for Modeling Surface Tension." *Journal of Computational Physics* **100 (2): 335–354**
- 6) Kusuno, Hiroaki, Hiroya Yamamoto, and Toshiyuki Sanada. "Lift force acting on a pair of clean bubbles rising in-line." *Physics of Fluids* 31.7 (2019).
- 7) Zenit, R., Federle, M.E., Das, A. and Mathai, V., The Interaction of an Oil Droplet and a Gas Bubble Rising in a Quiescent Fluid. *Available at SSRN 4524928*.
- 8) Krishna, R. and Van Baten, J.M., 2001. Simulating the rise characteristics of gas bubbles in liquids using CFD. *Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology*, *24***(4), pp.427-430**.
- 9) Wu, M. and Gharib, M., 2002. Experimental studies on the shape and path of small air bubbles rising in clean water. *Physics of fluids*, *14*(7), **pp.L49-L52.**
- 10) Federle, Madeline E., et al. "The interaction of an oil droplet and a gas bubble rising in a quiescent fluid." *International Journal of Multiphase Flow* **171 (2024): 104682.**