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 Topology optimization

A. Fawaz et al., “Topology optimization of heat exchangers: A review”, Energy, 2022

- 75% of previous topology optimization research for thermal-fluidic problems is based on finite element method. 
- FVM based thermal fluidic topology optimization solver development considering continuous adjoint method.
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 buoyantBoussinesqSimpleFoam  adjointShapeOptimizationFoam*

* C. Othmer et al., “Implementation of a continuous adjoint for topology optimization of ducted flows”, AIAA, 2007

 Governing equations

𝐮𝐮 � ∇ 𝐮𝐮 + ∇𝑝𝑝 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 + 𝛼𝛼𝐮𝐮 = 0
−∇ � 𝐮𝐮 = 0

 Sensitivity

∇ � 𝐯𝐯 = 0
∇𝑞𝑞 − 2𝐷𝐷 𝐯𝐯 𝐮𝐮 − ∇ � 2𝜈𝜈𝐷𝐷 𝐯𝐯 + 𝛼𝛼𝐯𝐯 = 0

Primal

Adjoint

𝜕𝜕ℒ
𝜕𝜕𝛼𝛼𝑖𝑖

= 𝐮𝐮𝑖𝑖 � 𝐯𝐯𝑖𝑖𝑉𝑉𝑖𝑖

 Optimizer (Steepest descent method)
𝛼𝛼𝑛𝑛 = 𝛼𝛼0 − 𝜆𝜆

𝜕𝜕ℒ
𝜕𝜕𝛼𝛼𝑖𝑖

 Governing equations

𝐮𝐮 � ∇ 𝐮𝐮 + ∇𝑝̂𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 − g𝜌𝜌𝑘𝑘 = 0
−∇ � 𝐮𝐮 = 0

 Boussinesq approximation
𝜌𝜌 = 𝜌𝜌0 1 − 𝛽𝛽(𝑇𝑇 − 𝑇𝑇0)

𝐮𝐮 � ∇𝑇𝑇 − ∇ � 𝒦𝒦∇𝑇𝑇 = 0

 Objective
𝐽𝐽𝐷𝐷𝐷𝐷𝐷𝐷. = −�

Γ
𝑑𝑑Γ 𝑝𝑝 + �1

2𝑢𝑢
2 𝐮𝐮 � 𝐧𝐧 𝐽𝐽𝑢𝑢𝑢𝑢𝑢𝑢. = −�

𝑜𝑜𝑢𝑢𝑢𝑢
𝑑𝑑Γ �𝑐𝑐 2 𝐮𝐮 − 𝐮𝐮𝑑𝑑

2

𝜃𝜃

Topology optimization solver considering Boussinesq approximation 
for natural convection and heat transfer studies is developed 

coupling buoyantBoussinsesqSimpleFoam with adjointShapeOptimizationFoam.

𝛼𝛼Vmag
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 Continuous adjoint method

Numerical methodologies

 Objective function

𝐽𝐽 =
1
2�Ω

𝑇𝑇 − 𝑇𝑇𝑑𝑑 2𝑑𝑑Ω (𝑇𝑇𝑑𝑑: Desired temperature )

- Minimize the difference between the temp. distribution and the desired temperature in the computational domain.

- Augmented objective function, ℒ (Lagrangian)

ℒ = 𝐽𝐽 + �
𝑖𝑖=1

𝑛𝑛

�
Ω
𝜆𝜆𝑖𝑖ℜ𝑖𝑖𝑑𝑑Ω = 𝐽𝐽 + �

Ω
𝐯𝐯ℜ𝐮𝐮𝑑𝑑Ω + �

Ω
𝑞𝑞ℜ𝑝𝑝𝑑𝑑Ω + �

Ω
𝑇𝑇𝑎𝑎ℜ𝑇𝑇𝑑𝑑Ω

 Governing equations (Residuals)

ℜ𝐮𝐮 = 𝐮𝐮 � ∇ 𝐮𝐮 + ∇𝑝̂𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮
−g𝜌𝜌𝑘𝑘 + 𝛼𝛼 𝛾𝛾 𝐮𝐮 ≅ 0

ℜ𝑝𝑝 = −∇ � 𝐮𝐮 ≅ 0

ℜ𝑇𝑇 = 𝐮𝐮 � ∇𝑇𝑇 − ∇ � (𝒦𝒦 γ ∇𝑇𝑇) ≅ 0

ℜ𝑞𝑞 = −∇ � 𝐯𝐯 ≅ 0
ℜ𝐯𝐯 = − ∇𝐯𝐯 𝐮𝐮 − 𝐮𝐮 � ∇ 𝐯𝐯 + ∇𝑞𝑞 − ∇ � 2𝜈𝜈𝜈𝜈 𝐯𝐯

+𝛼𝛼 𝛾𝛾 𝐯𝐯 + 𝑇𝑇𝑎𝑎∇𝑇𝑇 ≅ 0
ℜ𝑇𝑇𝑎𝑎 = 𝐮𝐮 � ∇𝑇𝑇𝑎𝑎 − ∇ � 𝒦𝒦 γ ∇𝑇𝑇𝑎𝑎 + 𝛽𝛽𝐯𝐯 � g + (𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂) ≅ 0

 Sensitivity
𝜕𝜕ℒ
𝜕𝜕𝛾𝛾 = 𝐮𝐮 � 𝐯𝐯

𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕 + ∇𝑇𝑇𝑎𝑎 � ∇𝑇𝑇

𝜕𝜕𝒦𝒦
𝜕𝜕𝜕𝜕 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

Primal Adjoint

Velocity u v

Pressure 𝑝𝑝 𝑞𝑞

Temperature 𝑇𝑇 𝑇𝑇𝑎𝑎

Derived adjoint equations

Derived sensitivity
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 Numerical method for topology optimization (1/2)

Numerical methodologies

 Design variable

- The inverse permeability and thermal conductivity for the design variable are represented by the SIMP function.
 Solid Isotropic Material with Penalization (SIMP)

 Optimizer: OC-algorithm*

𝛾𝛾 = 0: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝛾𝛾 = 1: 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
0 ≤ 𝛾𝛾 ≤ 1

𝛼𝛼 𝛾𝛾 = 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛
1 − 𝛾𝛾
𝑛𝑛 + 𝛾𝛾

𝑘𝑘 𝛾𝛾 = 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + (𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)𝛾𝛾
𝑛𝑛 + 1
𝑛𝑛 + 𝛾𝛾

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜶𝜶𝒎𝒎𝒎𝒎𝒎𝒎

𝟎𝟎
𝜸𝜸Solid Fluid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝒌𝒌𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭

𝜸𝜸Solid Fluid

- The optimality criteria (OC) algorithm is implemented to find the optimal design variable distribution controlling 
step size for volume constraints.

*O.Sigmund, “A 99 line topology optimization code written in Matlab”, Struct Multidisc Optim, 2001
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 Numerical method for topology optimization (2/2)

Numerical methodologies

 Helmholtz PDE filter*
- The Helmholtz partial differential equation is solved for sensitivity and design variables to get a stable solution.
- Homogeneous Neumann boundary conditions
- Low value of the length parameter

*  Capture the detailed shape
*  Unstable

- High value of length parameter
* Removed small detail
* Stable

 Variable Heaviside step function

*Lazarov et al., “Filters in topology optimization based on Helmholtz-type 
differential equations,” Int. J. Numer Methods Eng., 86, pp.765-781, (2011).

−𝑅𝑅𝑓𝑓∇2𝜙𝜙 + 𝜙𝜙 = 𝜙𝜙0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝛿𝛿𝛾𝛾

𝛾𝛾𝑜𝑜

𝛾𝛾𝑖𝑖 = 0.5 exp −𝛿𝛿 1 − 2𝛾𝛾𝑜𝑜,𝑖𝑖 − 1 − 2𝛾𝛾𝑜𝑜,𝑖𝑖 exp −𝛿𝛿

𝛾𝛾𝑖𝑖 = 0.5 + 0.5 1 − exp −𝛿𝛿
𝛾𝛾𝑜𝑜,𝑖𝑖 − 0.5

0.5
+ 𝛾𝛾𝑜𝑜,𝑖𝑖 − 0.5

exp −𝛿𝛿
0.5

[𝛾𝛾𝑖𝑖 ≤ 0.5]

[𝛾𝛾𝑖𝑖 > 0.5]

𝜕𝜕𝜕𝜕
𝜕𝜕𝐧𝐧 = 0

Length parameter

- The Heaviside step function makes the geometry sharp via the design variable projection.
- The value of step coefficient(𝛿𝛿) controls the projection sharpness.  
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 Algorithm structure (OpenFOAM ESI v2212)

Numerical methodologies

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝝏𝝏

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

𝐮𝐮 � ∇ 𝐮𝐮 + ∇𝑝̂𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 − g𝜌𝜌𝑘𝑘 + 𝛼𝛼 𝛾𝛾 𝐮𝐮 ≅ 0
−∇ � 𝐮𝐮 ≅ 0

𝐮𝐮 � ∇𝑇𝑇 − ∇ � (𝐾𝐾 γ ∇𝑇𝑇) ≅ 0

−∇ � 𝐯𝐯 ≅ 0
− ∇𝐯𝐯 𝐮𝐮 − 𝐮𝐮 � ∇ 𝐯𝐯 + ∇𝑞𝑞 − ∇ � 2𝜈𝜈𝜈𝜈 𝐯𝐯 + 𝛼𝛼 𝛾𝛾 𝐯𝐯 + 𝑇𝑇𝑎𝑎∇𝑇𝑇 ≅ 0
𝐮𝐮 � ∇𝑇𝑇𝑎𝑎 − ∇ � 𝐾𝐾 γ ∇𝑇𝑇𝑎𝑎 + 𝛽𝛽𝐯𝐯 � g + (𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂) ≅ 0

−𝑅𝑅𝑓𝑓∇2𝜙𝜙 + 𝜙𝜙 = 𝜙𝜙0

Update thermal conductivity, k
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 Strategy for natural convection case

Numerical methodologies

- The developed solver is separated into the pre-solver and optimization solver to obtain a stable solution, .
- The pre-solver gets a steady-state solution with sensitivity fields (w/o 𝛼𝛼 and k update).
- The opt.-solver finds a topology optimization solution using an initial value for the steady solution of pre-solver.

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝝏𝝏

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝝏𝝏

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

Pre-solver

Opt.-solver

- Pre-solver - - Opt.-solver -

Design 
variable

Sensitivity

Update thermal conductivity, k Update thermal conductivity, k
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 Benchmark case [*Barakos et al., 1994]

Numerical methodologies

- The analysis domain and boundary conditions of previous study are considered to verify the developed solver.

 Definition of optimization problem

*G. Barakos et al., “ Natural convection flow in square cavity revisited: Laminar and
Turbulent models with wall functions”, Int. J. Numerical Methods in Fluids, 1994.

Steady solution

Ra = 105 & Pr = 0.71

L = 3.63×10-2 m

T h
ot

= 
28

3K

T
cold = 263K

100 × 100

𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

= 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

= 0

g

Barakos’s results of Ra=105 case 

Isotherm Streamline

𝐽𝐽 =
1
2�Ω

𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂
2𝑑𝑑Ω

�
Ω
𝛾𝛾 𝑑𝑑Ω − Ω 𝜓𝜓 = 0

ℜ𝐮𝐮, ℜ𝑝𝑝, ℜ𝑇𝑇 ≅ 0
ℜ𝐯𝐯, ℜ𝑞𝑞, ℜ𝑇𝑇𝑎𝑎 ≅ 0

0 ≤ 𝛾𝛾 ≤ 1

 Minimize:  Subject to
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 Optimization procedure

Results

iteration

N
or

m
al

ize
d 

ob
je

ct
iv

e 
[%

] Solid volum
e rate [%

]
Normalized objective [%] = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂0
× 100

𝜹𝜹

iteration

* Desired temperature, 𝜃𝜃∗ = 0.1
* Solid volume constraint, 𝜓𝜓 = 30%

- The optimized configuration was obtained by a sequential procedure from thermal-fluidic fields to design variables 
distribution via sensitivity satisfying the solid volume constraint.

- ① Iteration 0 – 1000: Allow the grey zone to find a rough optimal shape.

- ② Iteration 1000 – 2000: 𝛿𝛿 increased to find the sharp interface.

- ③ Iteration 2000 – : Solution convergence for optimal configuration.

𝜽𝜽∗

①

②

③

① ② ③

𝜕𝜕ℒ
𝜕𝜕𝛾𝛾

= 𝐮𝐮 � 𝐯𝐯
𝜕𝜕𝛼𝛼
𝜕𝜕𝜕𝜕

+ ∇𝑇𝑇𝑎𝑎 � ∇𝑇𝑇
𝜕𝜕𝐾𝐾
𝜕𝜕𝜕𝜕

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

Optimizer
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 ELU function for coefficient of Heaviside step function

Results

- Due to the rapid coefficient increase of a linear function, the distribution of design variables can vanish and doesn’t 
match the solid volume constraint.  Require a gradual rise in coefficient

- ELU (Exponential Linear Unit) function instead of linear function for coefficient helps to find stable optimal solution.

𝜹𝜹

iteration

𝜹𝜹

iteration

Exponential 
function

Linear
function

Linear function
ELU function

𝑅𝑅𝑓𝑓/
∆𝑥𝑥 𝜓𝜓 Linear ELU

2

30%

80%

4

30%

80%

𝑅𝑅𝑓𝑓: Length parameter of Helmholtz PDE filter
∆𝑥𝑥: Grid size
𝜓𝜓: Solid volume constraint

41.8%

18.0%

101.1%

25.8%

30%

87%

3%

80%

39.8%

20.4%

48.6%

25.8%

30%

85%

30%

80%

※ Exponential Linear Unit (ELU)

1000 < 𝑖𝑖 ≤ 1100

1100 < 𝑖𝑖

𝛿𝛿𝐸𝐸 = 0.0001 𝑒𝑒0.091051 𝑖𝑖−1000 − 1 + 0.1

𝛿𝛿𝐿𝐿 = 0.0999 𝑖𝑖 − 900 + �𝛿𝛿𝐸𝐸
𝑖𝑖=1100

𝛿𝛿𝑐𝑐 = 0.1 𝑖𝑖 ≤ 1000

*Solid volume rate
*Normalized objective
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 Harsh conditions to get an optimized solution

Results

 Cases of 𝝍𝝍 = 𝟓𝟓𝟓𝟓𝟓
- It is difficult to match the intermediate value of solid volume constraint.

𝑅𝑅𝑓𝑓/∆𝑥𝑥 𝜓𝜓 Linear ELU

2

50%

4

49.5%58%

49.4%57%

46.0%60%

44.3%63%

 Transition point of optimized shape, 𝝍𝝍 = 𝟒𝟒𝟒𝟒~𝟒𝟒𝟒𝟒%
- Finding optimal solution for transition point from an air-insulation trend to a high diffusivity trend is challenging.

𝜓𝜓 [%] 38 39 40 41 42 43 44 45

𝛾𝛾

𝜃𝜃

38% 39% 40% 41% 42%

63.1% 62.7% 64.9% 64.9% 49.6%

45%

34.9%

43%

233%

44%

230%

*Solid volume rate
*Normalized objective

*Solid volume rate
*Normalized objective

𝑅𝑅𝑓𝑓: Length parameter of Helmholtz PDE filter
∆𝑥𝑥: Grid size
𝜓𝜓: Solid volume constraint
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 Effect of initial 𝜸𝜸-distribution  

Results

Opt. from
initial cond.

Opt. from
pre-cond.

𝜓𝜓 [%]

45%

46%

48%

49%

34.9%

37.8%
40.0%

41.6%

52%

44.6%

71%

61%41.6%

50%

35.7%

35.7%

80%

25.5%

45 46 47 48 50 807060

- The stable optimal solution can be obtained when the previous results of solid volume constraints, which obtain the 
optimal solution, as the initial value. 

42 43 44

42%

49.6%

43%

43%

226%

35.5%
44%

38.3%

𝜓𝜓: Solid volume constraint
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Conclusion & Future works

 A topology optimization solver was developed based on the finite volume method of coupling 
bouyantBoussinesqSimpleFoam with adjointShapeOptimizationFoam. 

 Helmholtz PDE filter and Heaviside step projection were considered to obtain a distinct optimal 
geometry.

 ELU function for the coefficient of Heaviside step projection leads to stable optimal solution.

 Additional study for start point of ELU function is required. 

 It is recommended that the optimal solution close to the harsh condition sets as the initial 
conditions to obtain an optimal solution for harsh conditions.

 The effect of various conditions, such as solid volume constraints, conductivities, length 
parameters, desired temperature, etc., should be considered.
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