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 Topology optimization

A. Fawaz et al., “Topology optimization of heat exchangers: A review”, Energy, 2022

- 75% of previous topology optimization research for thermal-fluidic problems is based on finite element method. 
- FVM based thermal fluidic topology optimization solver development considering continuous adjoint method.



Introduction

3/14

 buoyantBoussinesqSimpleFoam  adjointShapeOptimizationFoam*

* C. Othmer et al., “Implementation of a continuous adjoint for topology optimization of ducted flows”, AIAA, 2007

 Governing equations

𝐮𝐮 � ∇ 𝐮𝐮 + ∇𝑝𝑝 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 + 𝛼𝛼𝐮𝐮 = 0
−∇ � 𝐮𝐮 = 0

 Sensitivity

∇ � 𝐯𝐯 = 0
∇𝑞𝑞 − 2𝐷𝐷 𝐯𝐯 𝐮𝐮 − ∇ � 2𝜈𝜈𝐷𝐷 𝐯𝐯 + 𝛼𝛼𝐯𝐯 = 0

Primal

Adjoint

𝜕𝜕ℒ
𝜕𝜕𝛼𝛼𝑖𝑖

= 𝐮𝐮𝑖𝑖 � 𝐯𝐯𝑖𝑖𝑉𝑉𝑖𝑖

 Optimizer (Steepest descent method)
𝛼𝛼𝑛𝑛 = 𝛼𝛼0 − 𝜆𝜆

𝜕𝜕ℒ
𝜕𝜕𝛼𝛼𝑖𝑖

 Governing equations

𝐮𝐮 � ∇ 𝐮𝐮 + ∇�̂�𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 − g𝜌𝜌𝑘𝑘 = 0
−∇ � 𝐮𝐮 = 0

 Boussinesq approximation
𝜌𝜌 = 𝜌𝜌0 1 − 𝛽𝛽(𝑇𝑇 − 𝑇𝑇0)

𝐮𝐮 � ∇𝑇𝑇 − ∇ � 𝒦𝒦∇𝑇𝑇 = 0

 Objective
𝐽𝐽𝐷𝐷𝑖𝑖𝐷𝐷. = −�

Γ
𝑑𝑑Γ 𝑝𝑝 + �1

2𝑢𝑢
2 𝐮𝐮 � 𝐧𝐧 𝐽𝐽𝑢𝑢𝑛𝑛𝑖𝑖. = −�

𝑜𝑜𝑢𝑢𝑢𝑢
𝑑𝑑Γ �𝑐𝑐 2 𝐮𝐮 − 𝐮𝐮𝑑𝑑

2

𝜃𝜃

Topology optimization solver considering Boussinesq approximation 
for natural convection and heat transfer studies is developed 

coupling buoyantBoussinsesqSimpleFoam with adjointShapeOptimizationFoam.

𝛼𝛼Vmag
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 Continuous adjoint method

Numerical methodologies

 Objective function

𝐽𝐽 =
1
2�Ω

𝑇𝑇 − 𝑇𝑇𝑑𝑑 2𝑑𝑑Ω (𝑇𝑇𝑑𝑑: Desired temperature )

- Minimize the difference between the temp. distribution and the desired temperature in the computational domain.

- Augmented objective function, ℒ (Lagrangian)

ℒ = 𝐽𝐽 + �
𝑖𝑖=1

𝑛𝑛

�
Ω
𝜆𝜆𝑖𝑖ℜ𝑖𝑖𝑑𝑑Ω = 𝐽𝐽 + �

Ω
𝐯𝐯ℜ𝐮𝐮𝑑𝑑Ω+ �

Ω
𝑞𝑞ℜ𝑝𝑝𝑑𝑑Ω+ �

Ω
𝑇𝑇𝑎𝑎ℜ𝑇𝑇𝑑𝑑Ω

 Governing equations (Residuals)

ℜ𝐮𝐮 = 𝐮𝐮 � ∇ 𝐮𝐮 + ∇�̂�𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮
−g𝜌𝜌𝑘𝑘 + 𝛼𝛼 𝛾𝛾 𝐮𝐮 ≅ 0

ℜ𝑝𝑝 = −∇ � 𝐮𝐮 ≅ 0

ℜ𝑇𝑇 = 𝐮𝐮 � ∇𝑇𝑇 − ∇ � (𝒦𝒦 γ ∇𝑇𝑇) ≅ 0

ℜ𝑞𝑞 = −∇ � 𝐯𝐯 ≅ 0
ℜ𝐯𝐯 = − ∇𝐯𝐯 𝐮𝐮 − 𝐮𝐮 � ∇ 𝐯𝐯 + ∇𝑞𝑞 − ∇ � 2𝜈𝜈𝐷𝐷 𝐯𝐯

+𝛼𝛼 𝛾𝛾 𝐯𝐯 + 𝑇𝑇𝑎𝑎∇𝑇𝑇 ≅ 0
ℜ𝑇𝑇𝑎𝑎 = 𝐮𝐮 � ∇𝑇𝑇𝑎𝑎 − ∇ � 𝒦𝒦 γ ∇𝑇𝑇𝑎𝑎 + 𝛽𝛽𝐯𝐯 � g + (𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂) ≅ 0

 Sensitivity
𝜕𝜕ℒ
𝜕𝜕𝛾𝛾 = 𝐮𝐮 � 𝐯𝐯

𝜕𝜕𝛼𝛼
𝜕𝜕𝛾𝛾 + ∇𝑇𝑇𝑎𝑎 � ∇𝑇𝑇

𝜕𝜕𝒦𝒦
𝜕𝜕𝛾𝛾 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

Primal Adjoint

Velocity u v

Pressure 𝑝𝑝 𝑞𝑞

Temperature 𝑇𝑇 𝑇𝑇𝑎𝑎

Derived adjoint equations

Derived sensitivity
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 Numerical method for topology optimization (1/2)

Numerical methodologies

 Design variable

- The inverse permeability and thermal conductivity for the design variable are represented by the SIMP function.
 Solid Isotropic Material with Penalization (SIMP)

 Optimizer: OC-algorithm*

𝛾𝛾 = 0: 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑

𝛾𝛾 = 1:𝐹𝐹𝑆𝑆𝑢𝑢𝑆𝑆𝑑𝑑
0 ≤ 𝛾𝛾 ≤ 1

𝛼𝛼 𝛾𝛾 = 𝛼𝛼𝑚𝑚𝑎𝑎𝑚𝑚𝑛𝑛
1 − 𝛾𝛾
𝑛𝑛 + 𝛾𝛾

𝑘𝑘 𝛾𝛾 = 𝑘𝑘𝑆𝑆𝑜𝑜𝑐𝑐𝑖𝑖𝑑𝑑 + (𝑘𝑘𝐹𝐹𝑐𝑐𝑢𝑢𝑖𝑖𝑑𝑑 − 𝑘𝑘𝑆𝑆𝑜𝑜𝑐𝑐𝑖𝑖𝑑𝑑)𝛾𝛾
𝑛𝑛 + 1
𝑛𝑛 + 𝛾𝛾

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝜶𝜶𝒎𝒎𝒎𝒎𝒎𝒎

𝟎𝟎
𝜸𝜸Solid Fluid

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝒌𝒌𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺

𝒌𝒌𝑭𝑭𝑺𝑺𝑭𝑭𝑺𝑺𝑺𝑺

𝜸𝜸Solid Fluid

- The optimality criteria (OC) algorithm is implemented to find the optimal design variable distribution controlling 
step size for volume constraints.

*O.Sigmund, “A 99 line topology optimization code written in Matlab”, Struct Multidisc Optim, 2001
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 Numerical method for topology optimization (2/2)

Numerical methodologies

 Helmholtz PDE filter*
- The Helmholtz partial differential equation is solved for sensitivity and design variables to get a stable solution.
- Homogeneous Neumann boundary conditions
- Low value of the length parameter

*  Capture the detailed shape
*  Unstable

- High value of length parameter
* Removed small detail
* Stable

 Variable Heaviside step function

*Lazarov et al., “Filters in topology optimization based on Helmholtz-type 
differential equations,” Int. J. Numer Methods Eng., 86, pp.765-781, (2011).

−𝑅𝑅𝑓𝑓∇2𝜙𝜙 + 𝜙𝜙 = 𝜙𝜙0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

𝛿𝛿𝛾𝛾

𝛾𝛾𝑜𝑜

𝛾𝛾𝑖𝑖 = 0.5 exp −𝛿𝛿 1 − 2𝛾𝛾𝑜𝑜,𝑖𝑖 − 1 − 2𝛾𝛾𝑜𝑜,𝑖𝑖 exp −𝛿𝛿

𝛾𝛾𝑖𝑖 = 0.5 + 0.5 1 − exp −𝛿𝛿
𝛾𝛾𝑜𝑜,𝑖𝑖 − 0.5

0.5
+ 𝛾𝛾𝑜𝑜,𝑖𝑖 − 0.5

exp −𝛿𝛿
0.5

[𝛾𝛾𝑖𝑖 ≤ 0.5]

[𝛾𝛾𝑖𝑖 > 0.5]

𝜕𝜕𝜙𝜙
𝜕𝜕𝐧𝐧 = 0

Length parameter

- The Heaviside step function makes the geometry sharp via the design variable projection.
- The value of step coefficient(𝛿𝛿) controls the projection sharpness.  
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 Algorithm structure (OpenFOAM ESI v2212)

Numerical methodologies

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

𝐮𝐮 � ∇ 𝐮𝐮 + ∇�̂�𝑝𝑟𝑟𝑟𝑟𝑟 − ∇ � 2𝜈𝜈𝐷𝐷 𝐮𝐮 − g𝜌𝜌𝑘𝑘 + 𝛼𝛼 𝛾𝛾 𝐮𝐮 ≅ 0
−∇ � 𝐮𝐮 ≅ 0

𝐮𝐮 � ∇𝑇𝑇 − ∇ � (𝐾𝐾 γ ∇𝑇𝑇) ≅ 0

−∇ � 𝐯𝐯 ≅ 0
− ∇𝐯𝐯 𝐮𝐮 − 𝐮𝐮 � ∇ 𝐯𝐯 + ∇𝑞𝑞 − ∇ � 2𝜈𝜈𝐷𝐷 𝐯𝐯 + 𝛼𝛼 𝛾𝛾 𝐯𝐯 + 𝑇𝑇𝑎𝑎∇𝑇𝑇 ≅ 0
𝐮𝐮 � ∇𝑇𝑇𝑎𝑎 − ∇ � 𝐾𝐾 γ ∇𝑇𝑇𝑎𝑎 + 𝛽𝛽𝐯𝐯 � g + (𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂) ≅ 0

−𝑅𝑅𝑓𝑓∇2𝜙𝜙 + 𝜙𝜙 = 𝜙𝜙0

Update thermal conductivity, k
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 Strategy for natural convection case

Numerical methodologies

- The developed solver is separated into the pre-solver and optimization solver to obtain a stable solution, .
- The pre-solver gets a steady-state solution with sensitivity fields (w/o 𝛼𝛼 and k update).
- The opt.-solver finds a topology optimization solution using an initial value for the steady solution of pre-solver.

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

Initialization, 𝜸𝜸 = 1 (Fluid)

Update inverse permeability, 𝜶𝜶

Evaluate objective, J

Primal pressure-velocity
SIMPLE corrector

Adjoint pressure-velocity
SIMPLE corrector

Update sensitivity, �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Helmholtz PDE filter for �𝝏𝝏𝑳𝑳
𝝏𝝏𝜸𝜸

Update step coefficient, 𝜹𝜹

Update design variable 
(OC-algorithm), 𝜸𝜸

Helmholtz PDE filter for 𝜸𝜸

Heaviside step projection for 𝜸𝜸

Converged?

Finish

Pre-solver

Opt.-solver

- Pre-solver - - Opt.-solver -

Design 
variable

Sensitivity

Update thermal conductivity, k Update thermal conductivity, k
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 Benchmark case [*Barakos et al., 1994]

Numerical methodologies

- The analysis domain and boundary conditions of previous study are considered to verify the developed solver.

 Definition of optimization problem

*G. Barakos et al., “ Natural convection flow in square cavity revisited: Laminar and
Turbulent models with wall functions”, Int. J. Numerical Methods in Fluids, 1994.

Steady solution

Ra = 105 & Pr = 0.71

L = 3.63×10-2 m

T h
ot

= 
28

3K

T
cold = 263K

100 × 100

𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

= 0

𝜕𝜕𝑇𝑇
𝜕𝜕𝐧𝐧

= 0

g

Barakos’s results of Ra=105 case 

Isotherm Streamline

𝐽𝐽 =
1
2�Ω

𝑇𝑇 − 𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂
2𝑑𝑑Ω

�
Ω
𝛾𝛾 𝑑𝑑Ω − Ω 𝜓𝜓 = 0

ℜ𝐮𝐮, ℜ𝑝𝑝, ℜ𝑇𝑇 ≅ 0
ℜ𝐯𝐯, ℜ𝑞𝑞, ℜ𝑇𝑇𝑎𝑎 ≅ 0

0 ≤ 𝛾𝛾 ≤ 1

 Minimize:  Subject to
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 Optimization procedure

Results

iteration

N
or

m
al

ize
d 

ob
je

ct
iv

e 
[%

] Solid volum
e rate [%

]
Normalized objective [%] = 𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑂𝑂𝑐𝑐𝑖𝑖

𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑢𝑢𝑖𝑖𝑂𝑂𝑐𝑐0
× 100

𝜹𝜹

iteration

* Desired temperature, 𝜃𝜃∗ = 0.1
* Solid volume constraint, 𝜓𝜓 = 30%

- The optimized configuration was obtained by a sequential procedure from thermal-fluidic fields to design variables 
distribution via sensitivity satisfying the solid volume constraint.

- ① Iteration 0 – 1000: Allow the grey zone to find a rough optimal shape.

- ② Iteration 1000 – 2000: 𝛿𝛿 increased to find the sharp interface.

- ③ Iteration 2000 – : Solution convergence for optimal configuration.

𝜽𝜽∗

①

②

③

① ② ③

𝜕𝜕ℒ
𝜕𝜕𝛾𝛾

= 𝐮𝐮 � 𝐯𝐯
𝜕𝜕𝛼𝛼
𝜕𝜕𝛾𝛾

+ ∇𝑇𝑇𝑎𝑎 � ∇𝑇𝑇
𝜕𝜕𝐾𝐾
𝜕𝜕𝛾𝛾

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖

Optimizer
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 ELU function for coefficient of Heaviside step function

Results

- Due to the rapid coefficient increase of a linear function, the distribution of design variables can vanish and doesn’t 
match the solid volume constraint.  Require a gradual rise in coefficient

- ELU (Exponential Linear Unit) function instead of linear function for coefficient helps to find stable optimal solution.

𝜹𝜹

iteration

𝜹𝜹

iteration

Exponential 
function

Linear
function

Linear function
ELU function

𝑅𝑅𝑓𝑓/
∆𝑥𝑥 𝜓𝜓 Linear ELU

2

30%

80%

4

30%

80%

𝑅𝑅𝑓𝑓: Length parameter of Helmholtz PDE filter
∆𝑥𝑥: Grid size
𝜓𝜓: Solid volume constraint

41.8%

18.0%

101.1%

25.8%

30%

87%

3%

80%

39.8%

20.4%

48.6%

25.8%

30%

85%

30%

80%

※ Exponential Linear Unit (ELU)

1000 < 𝑆𝑆 ≤ 1100

1100 < 𝑆𝑆

𝛿𝛿𝐸𝐸 = 0.0001 𝑒𝑒0.091051 𝑖𝑖−1000 − 1 + 0.1

𝛿𝛿𝐿𝐿 = 0.0999 𝑆𝑆 − 900 + �𝛿𝛿𝐸𝐸
𝑖𝑖=1100

𝛿𝛿𝑐𝑐 = 0.1 𝑆𝑆 ≤ 1000

*Solid volume rate
*Normalized objective
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 Harsh conditions to get an optimized solution

Results

 Cases of 𝝍𝝍 = 𝟓𝟓𝟎𝟎𝟓
- It is difficult to match the intermediate value of solid volume constraint.

𝑅𝑅𝑓𝑓/∆𝑥𝑥 𝜓𝜓 Linear ELU

2

50%

4

49.5%58%

49.4%57%

46.0%60%

44.3%63%

 Transition point of optimized shape, 𝝍𝝍 = 𝟒𝟒𝟒𝟒~𝟒𝟒𝟓𝟓𝟓
- Finding optimal solution for transition point from an air-insulation trend to a high diffusivity trend is challenging.

𝜓𝜓 [%] 38 39 40 41 42 43 44 45

𝛾𝛾

𝜃𝜃

38% 39% 40% 41% 42%

63.1% 62.7% 64.9% 64.9% 49.6%

45%

34.9%

43%

233%

44%

230%

*Solid volume rate
*Normalized objective

*Solid volume rate
*Normalized objective

𝑅𝑅𝑓𝑓: Length parameter of Helmholtz PDE filter
∆𝑥𝑥: Grid size
𝜓𝜓: Solid volume constraint
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 Effect of initial 𝜸𝜸-distribution  

Results

Opt. from
initial cond.

Opt. from
pre-cond.

𝜓𝜓 [%]

45%

46%

48%

49%

34.9%

37.8%
40.0%

41.6%

52%

44.6%

71%

61%41.6%

50%

35.7%

35.7%

80%

25.5%

45 46 47 48 50 807060

- The stable optimal solution can be obtained when the previous results of solid volume constraints, which obtain the 
optimal solution, as the initial value. 

42 43 44

42%

49.6%

43%

43%

226%

35.5%
44%

38.3%

𝜓𝜓: Solid volume constraint
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Conclusion & Future works

 A topology optimization solver was developed based on the finite volume method of coupling 
bouyantBoussinesqSimpleFoam with adjointShapeOptimizationFoam. 

 Helmholtz PDE filter and Heaviside step projection were considered to obtain a distinct optimal 
geometry.

 ELU function for the coefficient of Heaviside step projection leads to stable optimal solution.

 Additional study for start point of ELU function is required. 

 It is recommended that the optimal solution close to the harsh condition sets as the initial 
conditions to obtain an optimal solution for harsh conditions.

 The effect of various conditions, such as solid volume constraints, conductivities, length 
parameters, desired temperature, etc., should be considered.



Thank you!
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