

2024 11th OpenFOAM Korea Users' Community Conference Sep. 26~27, 2024, 대전 호텔 ICC www.nextfoam.co.kr

bouyantBoussinesqSimpleFoam 기반 위상최적화 연구

Topology optimization study based on bouyantBoussinesqSimpleFoam

Jae Sung Yang*

Sang Don Lee June Kee Min*****

*** Rolls-Royce UTC, Pusan National University ** NextFOAM *** School of Mechanical Engineering, Pusan National University**

본 연구성과는 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. RS-2024-00449088) This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (No. RS-2024-00449088)

Introduction

Topology optimization

- 75% of previous topology optimization research for thermal-fluidic problems is based on finite element method.
- FVM based thermal fluidic topology optimization solver development considering continuous adjoint method.

80

70

60

50

40

30

20

 $10¹$

 Ω

Publications percentage(%)

Introduction

- **Governing equations**
- $-\nabla \cdot \mathbf{u} = 0$
- $\mathbf{u} \cdot \mathbf{v}$) $\mathbf{u} + \mathbf{v} p_{rgb} \mathbf{v} \cdot [2 \nu D(\mathbf{u})] g p_k = 0$ $\mathbf{u} \cdot \nabla T - \nabla \cdot [\mathcal{K} \nabla T] = 0$
- **Boussinesq approximation** $\rho = \rho_0 [1 - \beta (T - T_0)]$

*buoyantBoussinesqSimpleFoam adjointShapeOptimizationFoam******

- **Governing equations** $\mathbf{u} \cdot \mathbf{v}$) $\mathbf{u} + \mathbf{v}$ $p - \mathbf{v} \cdot [2 \nu D(\mathbf{u})] + \alpha \mathbf{u} = 0$ $-V \cdot \mathbf{u} = 0$ $V \cdot V = 0$ $Vq - 2D(\mathbf{v})\mathbf{u} - V \cdot [2\nu D(\mathbf{v})] + \alpha \mathbf{v} = 0$ **Primal Adjoint**
- **Objective** $J_{Dis.} = - \bigr|$ Γ $d\Gamma(p+1/2u^2)\mathbf{u}\cdot\mathbf{n}$ $J_{uni.} = -\int_{out}$ $d\Gamma^{c}/_{2}$ $(u-u^{d})^{2}$

 $\partial\alpha_i$

 Sensitivity ℒ $\partial\alpha_i$ $=$ $\mathbf{u}_i \cdot \mathbf{v}_i V_i$

 Optimizer (Steepest descent method) $\alpha_n = \alpha_0 - \lambda$ ℒ

Topology optimization solver considering Boussinesq approximation for natural convection and heat transfer studies is developed coupling *buoyantBoussinsesqSimpleFoam* with *adjointShapeOptimizationFoam.*

Continuous adjoint method

- **Objective function**
- Minimize the difference between the temp. distribution and the desired temperature in the computational domain.

$$
J = \frac{1}{2} \int_{\Omega} (T - T_d)^2 d\Omega
$$
 (*T_d*: desired temperature)

- Augmented objective function, \mathcal{L} (Lagrangian)

$$
\mathcal{L} = J + \sum_{i=1}^{n} \int_{\Omega} \lambda_{i} \Re_{i} d\Omega = J + \int_{\Omega} \mathbf{v} \Re_{u} d\Omega + \int_{\Omega} q \Re_{p} d\Omega + \int_{\Omega} T_{a} \Re_{T} d\Omega
$$
\n**6** Overning equations (Residuals)

\n**7**

\n**8**

\n**8**

\n**9**

\n**9**

\n**1**

\n**1**

\n**2**

\n**3**

\n**4**

\n**4**

\n**5**

\n**6**

\n**7**

\n**8**

\n**8**

\n**9**

\n**1**

\n**1**

\n**1**

\n**1**

\n**2**

\n**3**

\n**4**

\n**5**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n**1**

\n**1**

\n**1**

\n**1**

\n**2**

\n**3**

\n**4**

\n**5**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n**1**

\n**1**

\n**1**

\n**1**

\n**2**

\n**3**

\n**4**

\n**4**

\n**5**

\n**6**

\n**6**

\n**7**

\n**8**

\n**9**

\n**1**

\n

- **Numerical method for topology optimization (1/2)**
- **Design variable**

 $\gamma = 0$: Solt $\gamma = 1: F$ $0 \leq \gamma \leq 1$

- **Solid Isotropic Material with Penalization (SIMP)**
- The **inverse permeability** and **thermal conductivity** for the design variable are represented by the SIMP function.

Optimizer: OC-algorithm*

- The optimality criteria (OC) algorithm is implemented to find the optimal design variable distribution controlling step size for volume constraints.

- **Numerical method for topology optimization (2/2)**
- **Helmholtz PDE filter***
	- The Helmholtz partial differential equation is solved for sensitivity and design variables to get a stable solution.
- Homogeneous Neumann boundary conditions
- Low value of the length parameter
	- * Capture the detailed shape
	- * Unstable
- High value of length parameter
	- * Removed small detail * Stable

$$
\overline{D} \overline{M^2} + 1
$$

$$
R_f N^2 \boldsymbol{\phi} + \boldsymbol{\phi} = \boldsymbol{\phi}_0
$$

Length parameter

$$
\frac{\partial \phi}{\partial \mathbf{n}} = 0
$$

 \sim \cdot

Variable Heaviside step function

- The Heaviside step function makes the geometry sharp via the design variable projection.
- The value of step coefficient(δ) controls the projection sharpness.

$$
\gamma_i = 0.5 [\exp\{-\delta(1 - 2\gamma_{o,i})\} - (1 - 2\gamma_{o,i}) \exp(-\delta)] \qquad [\gamma_i \le 0.5]
$$

$$
\gamma_i = 0.5 + 0.5 \left[1 - \exp \left\{ -\delta \left(\frac{\gamma_{o,i} - 0.5}{0.5} \right) \right\} + (\gamma_{o,i} - 0.5) \frac{\exp(-\delta)}{0.5} \right] \quad [\gamma_i > 0.5]
$$

*Lazarov et al., "Filters in topology optimization based on Helmholtz-type differential equations," *Int. J. Numer Methods Eng.*, 86, pp.765-781, (2011).

Algorithm structure (OpenFOAM ESI v2212)

Strategy for natural convection case

- The developed solver is separated into the pre-solver and optimization solver to obtain a stable solution,.
- The pre-solver gets a steady-state solution with sensitivity fields (w/o α and k update).
- The opt.-solver finds a topology optimization solution using an initial value for the steady solution of pre-solver.

Benchmark case [*Barakos et al., 1994]

The analysis domain and boundary conditions of previous study are considered to verify the developed solver.

Definition of optimization problem

1 Minimize:
$$
J = \frac{1}{2} \int_{\Omega} (T - T_{Obj})^2 d\Omega
$$
 2 Subject to

$$
\begin{cases}\n\int_{\Omega} \gamma \, d\Omega - |\Omega| \psi = 0 \\
\Re_{\mathbf{u}}, \Re_{p}, \Re_{T} \cong 0 \\
\Re_{\mathbf{v}}, \Re_{q}, \Re_{T_a} \cong 0 \\
0 \le \gamma \le 1\n\end{cases}
$$

Optimization procedure

** Desired temperature,* $\theta^* = 0.1$ $*$ *Solid volume constraint,* $\psi = 30\%$

- The optimized configuration was obtained by a sequential procedure from thermal-fluidic fields to design variables distribution via sensitivity satisfying the solid volume constraint.
- **① Iteration 0 – 1000:** Allow the grey zone to find a rough optimal shape.
- **- 2 Iteration 1000 2000:** δ increased to find the sharp interface.
- **③ Iteration 2000 – :** Solution convergence for optimal configuration.

ELU function for coefficient of Heaviside step function

- Due to the rapid coefficient increase of a linear function, the distribution of design variables can vanish and doesn't match the solid volume constraint. \rightarrow Require a gradual rise in coefficient
- ELU (Exponential Linear Unit) function instead of linear function for coefficient helps to find stable optimal solution.

- **Harsh conditions to get an optimized solution**
- **Cases of** $\psi = 50\%$
- It is difficult to match the intermediate value of solid volume constraint.

- **Transition point of optimized shape,** $\psi = 42 \times 45\%$
- Finding optimal solution for transition point from an air-insulation trend to a high diffusivity trend is challenging.

Effect of initial -distribution

- The stable optimal solution can be obtained when the previous results of solid volume constraints, which obtain the optimal solution, as the initial value.

Conclusion & Future works

- **A topology optimization solver was developed based on the finite volume method of coupling** *bouyantBoussinesqSimpleFoam* **with** *adjointShapeOptimizationFoam***.**
- **Helmholtz PDE filter and Heaviside step projection were considered to obtain a distinct optimal geometry.**
- **ELU function for the coefficient of Heaviside step projection leads to stable optimal solution.**
- **Additional study for start point of ELU function is required.**
- **It is recommended that the optimal solution close to the harsh condition sets as the initial conditions to obtain an optimal solution for harsh conditions.**
- **The effect of various conditions, such as solid volume constraints, conductivities, length parameters, desired temperature, etc., should be considered.**

Thank you!

본 연구성과는 2024년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. RS-2024-00449088) This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (No. RS-2024-00449088)