2024년도 11th OpenFOAM Korea Users' Community Conference

September 26, 2024, 대전 호텔 ICC

Surface film model을 이용한 강판의 냉각 모델 기초 연구

이원강

1서울대학교 조선해양공학과

September 26, 2024

OVUCC

-1-

September 26, 2024

11th OKUCC

-2-

연구 배경 및 필요성

- 연구 배경
 - 함정의 적외선 스텔스 기술은 함정이 방출하는 적외선 신호를 억제함으로써 피탐성은 낮추고, 생존성을 높이는 기술임
 - · 함정이 방출하는 적외선 신호의 원인은 함정의 내부(내부 열원)와 외부(태양 열 복사)로 구분됨
 - 현대 함정에는 함 외부에 설치된 해수 분사 노즐을 통해 해수를 함정 표면에 분사하여 선체 표면을 냉각시켜, 방출되는 적외선 신호를 저감함
- 연구 필요성
 - 설계변인에 따라 해수가 분사되는 영역을 추정하고, 해당 영역에서 선체 냉 각 성능의 추정이 필요함

<해수 분사 시스템을 이용한 적외선 신호 저감*>

- < Thermal image of nozzle experiment*>
- *Yoon, S., Jung, H., & Cho, Y. (2017). An Experimental Study on the Dispersion Characteristics of Seawater Injection Nozzle for Hull Cooling. Journal of the Korea Institute of Military Science and Technology, 20(6), 767-773.
- * 대한조선학회(2012), "함정", 텍스트북스

-3-

선행연구 조사 (1)

- 전산유체역학을 사용한 냉각 효과 추정
 스프레이의 거리에 따른 냉각 효과를 추정함
 - 해석자로 Ansys Fluent를 사용함
 - 노즐과의 거리 1-4cm에 위치한 직경 8cm의 디스크에 스프레이를 분사하여 냉각 효과를 추정함

* Raju, M., Sarma, R. N., Suryan, A., Nair, P. P., & Nižetić, S. (2022). Investigation of optimal water utilization for water spray cooled photovoltaic panel: A three-dimensional computational study. Sustainable energy technologies and assessments, 51, 101975. -4-

- 태양광 발전에 사용하는 photovoltaic panel 냉각을 위해, 다양한 위치에서 스프레이를 분사하고, 분사한 스프레이에 의한 냉각 효과를 추정
 - Ansys Fluent를 사용하였으며, flow rate를 변화하여 해석 수행

Flow Rate (kg/s)

0.0196

0.0252

0.0315

0.0364

0.0420

0.0476

0.0532

0.0700

0.0840

0.1400

* Raju, M., Sarma, R. N., Suryan, A., Nair, P. P., & Nižetić, S. (2022). Investigation of optimal water utilization for water spray cooled photovoltaic panel: A three-dimensional computational study. Sustainable energy technologies and assessments, 51, 101975. -5-

Spray Velocity (m/s)

2.50

3.21

4.02

4.65

5.36

6.08

6.79

8.94

10.73

17.88

Table 2

70

90

112.5

130

150

170

190

250

300

500

Flow Rate (L/h)

Flow through nozzles for top cooling.

연구 목표 및 내용

- 연구 목표
 - 해수 공급 시스템의 해수 분사 영역 추정
 - OpenFOAM을 사용한 선체 표면의 냉각 효과 추정
 - 추정한 해수 분사 영역 이용
- 연구 내용
 - 설계변인에 따라 따라 해수가 분사되는 영역 추정
 - 한화오션 측에서 제공한 실험 데이터 이용
 - 물과 강판 사이 열전달 효과를 계산할 수 있는 해석 솔버 개발
 - Surface film model을 이용한 reactingParcelFoam 코드 분석
 - reactingParcelFoam 코드를 이용하여 새로운 해석 솔버 개발
 - 개발한 솔버를 이용한 해석
 - 간단한 예시 케이스를 구성하여 해석 수행 후, 이론적으로 계산한 결과와 비교

September 26, 2024

-7-

해수 공급 시스템 모델링

- 해수는 부채꼴 형태로 분사된다고 가정함
 - Xy, yz평면 상 최대 분사 각도는 한화오션 측으로부터 제공받은 데이터를 바탕으로 선정함
 - 노즐의 분사 특성을 고려하여 분사 각도에 따른 입자 개수를 다르게 설정
 - 그림에서의 l, m, n은 각 분사 각도 범위에 포함되는 유체 입자 개수를 의미

Towing Tank

이론적인 방법을 이용한 분사 영역 추정

- 유체 입자에 대한 가정 및 가해지는 힘
 - 유체 입자의 크기, 속도가 주어질 경우 함정 표면에 입자가 충돌하는 위치 를 이론적으로 계산할 수 있음
 - 유체 입자의 모양은 구로 일정하게 유지되고, break-up은 없다고 가정
 - 모두 동일한 크기의 유체 입자가 분출된다고 가정
 - 방향에 상관없이 유체 입자의 속력은 모두 동일하다고 가정

- › 아래 수식과 같이 **중력과, 항력만** 고려
- 속도에 대한 비선형 미분 방정식 이기 때 문에 해석해가 존재하지 않음
- 시간에 따라 적분하여 최종 위치 계산

$$\begin{aligned} &\frac{\pi}{6}\rho_{water}d^{3}\frac{d\vec{U}}{dt} = \vec{F}_{g} + \vec{F}_{d} = m\vec{g} + \vec{F}_{d} \\ &\vec{F}_{d} = \frac{1}{2}\rho_{air}C_{d}\frac{\pi}{4}d^{2}|\vec{U} - \vec{U}_{wind}|(\vec{U} - \vec{U}_{wind}) \\ &C_{d} &\cong 0.5 \end{aligned}$$

분사 영역 추정 비교

- 이론적으로 구한 분사 영역과 전산 해석을 통한 분사 영역 비교
 - 전산 해석은 OpenFOAM의 reactingParcelFoam 솔버 사용
 - 스프레이 분사 라이브러리를 수정하여 앞서 가정한 방식과 같이 분사 영역 추정
 - 아래 그림은 이론적으로 구한 최종 분사 영역과 전산 해석을 통한 분사 영역을 비교한 그림임
 - 이론적으로 분사영역을 추정하는 것이 더 효율적인 추정 결과임

분사 영역 추정 기법 선정

- 전산 유체역학 해석을 이용한 분사 영역 추정 방법의 문제점
 - 연구 목적과 부합하지 않음
 - 연구의 주된 목적은 함정 표면에서 얇은 유체 막으로 인한 선체 냉각 성능을 추정
 - 입자의 대기 중 분포가 중요하지 않고, 입자의 분사 중 기화, break-up과 같은 복잡한 현 상은 다루지 않음
 - 특정 속도, 특정 크기의 유체 입자가 어느 위치에서 선체에 충돌하는지가 중요
 - 따라서, 해석 중 모든 입자들을 하나하나 모두 구현할 필요가 없음
 - 계산 용량이 늘어남
 - 입자들을 위치시키기 위해 선체 표면과 노즐 사이 공간을 해석 영역으로 설정
 - 불필요한 메모리 소모
 - 동일한 궤적으로 이동하는 입자들을 모두 메모리 상에 구현 필요
 - 해석이 진행됨에 따라 해석 영역에 더 많은 입자들이 해석 공간 상에 위치할수록 계산 속도가 급격히 저하됨

- 이론적으로도 동일한 분사 영역 추정 가능

-12-

해수에 의한 액체 박막 모사 기법

- 액체 박막 모사를 위해 surface film model을 사용
 - 액체 박막에서 벽면과 수직한 방향의 속도는 무시할 수 있다고 가정
 - 벽면과 평행한 방향의 운동량, 에너지의 diffusion이, 벽면과 수직한 방향 의 diffusion에 비해 무시할 수 있을 만큼 작다고 가정
- 벽면 표면에 가상의 extruded surface mesh를 구성하고, extruded surface mesh에서 surface film의 두께에 대한 지배 방정식을 구성
 - 지배 방정식을 풀이하여 surface film의 이송 계산

액체 박막 모사를 위한 surface film 지배 방정식

- Control volume에 대하여 지배 방정식을 세워, film의 높이인 δ가 곱해진 형태로 되어 있음
- Continuity equation

$$\frac{\partial \rho \delta}{\partial t} + \nabla \cdot [\rho \delta U] = S_{\rho \delta}$$

• $\int \frac{\partial \rho}{\partial t} dV = A \int_0^{\delta} \frac{\partial \rho}{\partial t} dy = A \frac{\partial \rho \delta}{\partial t}$
• $\int \nabla \cdot [\rho u] dV = \nabla \cdot \int_0^{\delta} [\rho u] dV = \nabla \cdot A \int_0^{\delta} [\rho u] dy = A \nabla \cdot \rho \delta \cdot \frac{1}{\delta} \int_0^{\delta} [u] dy = A \nabla \cdot [\rho \delta U]$

Momentum equation

$$- \frac{\partial \rho \delta U}{\partial t} + \nabla_{s} \cdot [\rho \delta U U] = -\delta \nabla_{s} p + S_{\rho \delta U}$$

•
$$\int \frac{\partial \rho u}{\partial t} dV = A \int_0^{\delta} \frac{\partial \rho u}{\partial t} dy = A \frac{\partial \rho \delta U}{\partial t}$$

- $\int \nabla \cdot [\rho u u] dV = \nabla \cdot \int_0^{\delta} [\rho u u] dV = \nabla \cdot \rho A \int_0^{\delta} [u u] dy = A \nabla \cdot \rho \delta \cdot \frac{1}{\delta} \int_0^{\delta} [u u] dy = A \nabla \cdot [\rho \delta U U]$
- Enthalpy equation (Energy equation)

$$\frac{\partial \rho \delta h}{\partial t} + \nabla \cdot \left[\rho \delta U h \right] = S_{\rho \delta h}$$

•
$$\int \frac{\partial \rho h}{\partial t} dV = A \int_0^{\delta} \frac{\partial \rho h}{\partial t} dy = A \frac{\partial \rho \delta h}{\partial t}$$

• $\int \nabla \cdot [\rho uh] dV = \nabla \cdot \int_0^{\delta} [\rho uh] dV = \nabla \cdot \rho A \int_0^{\delta} [\rho uh] dy = A \nabla \cdot \rho \delta \cdot \frac{1}{\delta} \int_0^{\delta} [uh] dy = A \nabla \cdot [\rho \delta Uh]$

Surface film model을 이용한 OpenFOAM의 기본 솔버

- ReactingParcelFoam
 - 기본적으로 multi-region solver 형식으로 구성
 - 대기 중의 영역인 primary region 과 surface film이 존재하는 surface film region으로 구성
 - reactingParcelFoam은 primary region에서 물이 분사되는 과정을 구현하는 spray model과, surface film region 에서 film의 유동을 계산하는 surface film model이 합쳐져 있음

ReactingParcelFoam 솔버 구성

- 세부적인 솔버 구성은 아래와 같이 나뉨
 - 1. Parcel의 움직임을 tracking
 - 2. Surface film region에서 유동 해석
 - 3. Primary region(대기중의 영역)에서 유동 해석
- Primary region에서 유동은 관심 없음
 - 그러나, primary region을 풀지 않아도 surface film 라이브러리 자체가 무조건 multi-region 격자에서 작동하도록 되어 있음
 - 격자는 multi-region으로 구성해야 함
- Parcel의 움직임을 tracking하는 것도 관심 없음
- Surface film region에서의 유동 해석하는 부분은 반드시 필요

```
parcels.evolve();
surfaceFilm.evolve();
   (solvePrimaryRegion)
    if (pimple.nCorrPimple() <= 1)</pre>
       // #include "rhoEqn.H"
   // --- PIMPLE loop
   while (pimple.loop())
       // #include "UEgn.H"
        //#include "YEqn.H"
        //#include "EEqn.H"
        // --- Pressure corrector loop
        while (pimple.correct())
            #include "pEqn.H"
           (pimple.turbCorr())
            turbulence->correct();
   rho = thermo.rho();
```

< ReactingParcelFoam main 문>

September 26, 2024

강판 냉각 열전달 해석 솔버 설명

- ReactingParcelFoam에서 spray model을 구현하지 않고, surface film model만
 사용하는 것으로 솔버 수정
 - Primary region에서의 유동 해석하는 부분을 제거함
- Surface film 내부 유동 해석 수행 시, 계산되는 source term 수정
 - Source term은 Parcel 라이브러리와 surface film 라이브러리를 이용하여 계산됨
 - Parcel 라이브러리에서 계산되는 source term은 필요가 없으므로 제거함
 - addSource 함수를 이용하여 앞서 **추정한 해수 분사 data를 source term으로 가함**
 - addSource 함수는 surface film 라이브러리의 thermoSingleLayer 클래스 안에 있는 멤버 함수로 surface film 유동에 source term을 update하는 함수임
 - Source term은 특정 주기마다 추가되는 식으로 하여, quasi-steady로 해석을 수행할 수 있게 수정함

강판 냉각 열전달 해석 솔버 설명 – surface film 라이브러리 (1)

- Surface film 라이브러리에서는, splash, separation, evaporation, radiation 등 의 필요 없는 option은 끔
 : addSource 함수로 계산
 : Surface film 라이브러리에서 option으로 구현
 Continuity equation (^{∂ρ}/_{∂t} + ∇ · [ρU] = S_{ρδ})
 · S_{ρδ} = [S_{ρδ,imp}(= S_{ρδ,abs} + S_{ρδ,spl})] + [S_{ρδ,vap} + S_{ρδ,sep}] ✓ S_{ρδ}는 단위면적당 충돌(S_{ρδ,imp} = 흡수(S_{ρδ,abs}) or 튐(S_{ρδ,spl})), 증발(S_{ρδ,vap}), 분할
 - (S_{ρδ.sep}) 등에 의한 질량소스로 나뉨

강판 냉각 열전달 해석 솔버 설명 – surface film 라이브러리 (2)

- Momentum equation $\left(\frac{\partial \rho \delta U}{\partial t} + \nabla_{s} \cdot [\rho \delta UU]\right) = -\delta \nabla_{s} p + S_{\rho \delta U}$
 - p = p_{imp}(= p_{abs} + p_{spl}) + p_{vap} + p_σ + p_δ + p_g
 ✓ 압력항은 충돌(p_{imp} = 흡수(p_{abs}) or 튐(p_{spl})), 증발(p_{vap}), 모세관(p_σ), 정(p_δ), 상변화(p_g) 압력으로 나뉨
 - $S_{\rho\delta U} = (S_{\rho\delta U,imp}(=S_{\rho\delta U,abs} + S_{\rho\delta U,spl})) + (\tau_g \tau_w + \tau_{mar} + \rho g\delta + \tau_{\theta} + S_{\rho\delta U,sep})$
 - ✓ S_{ρδU}는 충돌(S_{ρδU,imp} = 흡수(S_{ρδ,abs}) or 튐(S_{ρδ,spl})), gas-film 사이 전단응력(τ_g), wall-film(τ_w) 경계면에서의 전단응력, 열 모세관 응력(τ_{mar}), 체적력(ρgδ), 접촉각 힘(τ_θ) 등으로 나뉨
- Enthalpy equation $\left(\frac{\partial \rho \delta h}{\partial t} + \nabla \cdot [\rho \delta U h]\right) = S_{\rho \delta h}$
 - S_{ρδh} = [S_{ρδh,imp}(= S_{ρδh,abs} + S_{ρδh,spl})] + [q''_g q''_w + S_{ρδh,vap} + S_{ρδh,rad} + S_{ρδh,sep}]
 ✓ S_{ρδh}는 gas로부터 surface film으로의 대류 열 플럭스(q''_g), surface film으로부터 벽으로의 대류 열 플럭스(q''_w), 증발(S_{ρδh,vap}), 복사(S_{ρδh,rad}), 충돌(S_{ρδh,imp}), 튐(S_{ρδh,spl}), 박막 분 할(S_{ρδh,sep}), 고체 벽에 흡수되는 질량에 의한 에너지 손실(S_{ρδh,abs})으로 나뉨

열전달 라이브러리 수정

- 기존의 surface film과 벽면 사이의 열전달 효과를 계산하는데 필요한 열전달계수는, 해석 케이스 파일의 dictionary 내에 적혀 있는 일정한 값을 이용하여 계산됨
 - $\dot{q}_{w}^{\prime\prime} = \mathbf{h}_{\text{conv,w}}(\mathbf{T}_{\text{wall}} \mathbf{T}_{\text{fluid}})$
- 열전달계수 $h_{conv,w}$ 는Al Khalil*(1991)에 의해, 아래의 식과 같이 계산됨 - $\overline{Nu_f} = \frac{h_{conv,w}\delta}{k} = 3.2 + 0.000237Re_f$
 - 열전달계수 h_{conv,w}을 위의 식에 의해 계산되도록 라이브러리를 수정함

*AL-KHALIL, K. M., KEITH, T. G. J., & de Witt, K. J. (1991). Hydrodynamic and thermal analysis of rivulet flow down a vertical solid surface. *International Journal of Numerical Methods for Heat & Fluid Flow*, 1(1), 63-76. -20-

-21-

September 26, 2024

예시 케이스 구성

- 직사각형 평판 위에 물이 놓여있는 상황의 예시 케이스 구성
 - 유체인 물과 고체인 벽면 사이의 열전달 효과 계산
 - 평판 온도는 350 K, 물 온도는 300 K으로 설정
 - Surface film의 두께는 0.01m로 설정
 - 물과 벽면사이 전달되는 열 플럭스는 아래와 같이 계산됨

•
$$\frac{\partial \rho \delta h}{\partial t} = -\dot{q}_{w}^{\prime\prime} = h_{conv,w}(T_{wall} - T_{film}) \rightarrow \frac{h^{i+1}\delta - h^{i}\delta}{\Delta t} = \frac{h_{conv,w}(T_{wall} - T_{film})}{\rho}$$

- 한 time step (Δ*t*=1)이 지난 후, 물의 온도는 아래와 같이 계산됨

•
$$\overline{Nu_f} = \frac{h_{conv,w}\delta}{k} = 3.2 + 0.000237 Re_f \rightarrow h_{conv,w} = 192$$

•
$$h^{i+1} = h^i + \frac{h_{conv,w}(T_{wall} - T_{film})}{\rho\delta} \Delta t \rightarrow T^{i+1} = T^i + \frac{1}{c_p} \frac{h_{conv,w}(T_{wall} - T_{film})}{\rho\delta} \Delta t$$

$$= 300 + \frac{1}{4183} \cdot \frac{192 \cdot (350 - 300)}{1000 \cdot 0.01} \cdot 1 = 300.233$$

이.01m Wall(=mapped boundary) 350K < 예시 케이스 구성>

-22-

11th OKUCC

September 26, 2024

예시 케이스 해석 결과

• 한 time step ($\Delta t = 1$)이 지난 후의 해석 결과 확인 - 직접 계산한 결과와 해석 결과가 동일한 것을 확인 $\frac{deltaT = 1}{time = 1}$

▪ 경계 조건

	Temparature	Velocity	Delta
Side	Neumann	slip	Neumann
ExtrudedFace	Neumann	Slip	Neumann
MappedBoundary	Dirichlet	No slip	Neumann

■ 수치해석 기법

- Time discretization scheme
 - Crank-Nicolson scheme
- Spatial discretization scheme
 - Gradient scheme: Linear
 - Divergence scheme: Second-order upwind

Starting time loop

Courant Number mean: 0 max: 0 <u>Film max Co</u>urant number: 0 deltaT = 1 Time = 1

Solving 3-D cloud reactingCloud1 Cloud: reactingCloud1

j				
Current number of parcels		Θ		
Current mass in system		Θ		
Linear momentum		(0	0	0)
Linear momentum				
Linear kinetic energy				
model1:				
number of parcels added		Θ		
mass introduced		Θ		
Parcels absorbed into film		Θ		
New film detached parcels		Θ		
New film splash parcels		Θ		
Parcel fate (number, mass)				
- escape		Θ,	0	
- stick		Θ,	0	
Temperature min/max		Θ,	0	
Mass transfer phase change		0		
Mass transfer devolatilisation		Θ		
Mass transfer surface reaction	=	0		

Evolving thermoSingleLayer for region wallFilmRegion diagonal: Solving for deltaf*rhof, Initial residual = 0, Final diagonal: Solving for deltaf*rhof, Initial residual = 0, Final smoothSolver: Solving for Ufx, Initial residual = 0.730494937, smoothSolver: Solving for Ufy, Initial residual = 0.730494937, smoothSolver: Solving for Ufz, Initial residual = 0.9929550814 smoothSolver: Solving for Ufz, Initial residual = 0,9929550814 smoothSolver: Solving for deltaf, Initial residual = 0.4136146 diagonal: Solving for deltaf*rhof, Initial residual = 0, Final

Surface film: thermoSingleLayer	
added mass = 0	
current mass = 9.945114684	
min/max(mag(U)) = 0, 1.206647633e-15	
min/max(delta) = 0.01, 0.01	
coverage = 1	
injected mass = 0	
 patch: region0 to wallFilmRegion floorFaces: 0 	
transferred mass = 0	
 patch: region0 to wallFilmRegion floorFaces: 0 	
min/mean/max(T) = 300.2330668, 300.2330668, 300.233	0668

September 26, 2024

경계조건 관련 의문점

- Mapped boundary에 해당하는 wall을 제외한, surface film에서의 경계조건은 바꾸어도 결과가 변하지 않음
 - Surface film 격자는 물리적으로 의미가 없는 가상의 격자임
 - 경계조건을 줄 경우 문제가 있음
 - $\frac{\partial \phi}{\partial n} = C \rightarrow \frac{\phi_b \phi_p}{h_{cell}} = C \rightarrow \phi_b = \phi_p + Ch_{cell}$
 - *h_{cell}*을 surface film 격자의 높이라고 했을 때, 높이가 달라지면 경계에서 값이 달라지는 것 은 말이 안 됨
 - 실제 film에서의 속도 분포가 오른쪽 그림과 같이 나타난다고 했을 때, 속도를 제대로 계산하기 위해서는 수직 방향으로 다수의 격자를 쌓고 정확한 경계조건을 주어야 함

- 그러나, surface film 격자는 single layer region을 사용하므로 경계조건을 주는 것이 의미가 없음
- Surface film 라이브러리에는 속도 분포를 quadratic으로 가정하여 경계조건으로 들어 가야 하는 부분을 analytic하게 가정하여 계산 후 source term으로 가함

•
$$u(z) = \frac{3\overline{U}}{\delta} \left(z - \frac{z^2}{2\delta} \right), \left(\overline{U} = \frac{1}{\delta} \int_{\{0\}}^{\{\delta\}} u dz \right) \Longrightarrow \tau_w = \mu \frac{3\overline{U}}{\delta}$$

-24-

추가적인 솔버 수정

- 기존 surface film 라이브러리의 경우 thermo 경계조건이 Dirichlet 외에는 적용되지 않음
 - wall에서 온도를 update할 수 있는 방법이 없고, 오로지 Dirichlet 경계에서만 사용할 수 있도록 강제함
 - 아래의 벽면과 film 사이 대류 열 플럭스를 계산하는 과정에서 T_{wall}을 update 하는 과정은 없음
 - $\dot{q}_w^{\prime\prime} = h_{conv,w}(T_{wall} T_{film})$
 - T_{wall}은 변하지 않음
- 따라서, 아래와 같이, 일정한 열 플럭스가 가해질 때, surface film의 온도를 계산하고 벽의 온도를 update하는 식으로 솔버 수정
 - 현재, 열원의 정보가 없어, 우선은 열 플럭스가 일정하게 가해지는 것으로 설정함
 - Consant source \dot{q}''_w = const. 를 직접 엔탈피 방정식의 source term으로 가함
 - 엔탈피 방정식을 풀고, $T_{film} = \frac{h_{film}}{Cp} + T_{ref}$ 를 update함
 - $\dot{q}_{w}'' = h_{conv,w}(T_{wall} T_{film})$ 을 이용하여 T_{wall} 을 update 함

해석 결과

- 개발한 솔버를 이용하여 해수 공급 시스템의 선체 냉각 효과를 추정한 결과임
 - 왼쪽 그림은 선체 표면에 해수가 분사되는 상황을, 오른쪽 그림은 해수 분사
 시 선체 표면의 온도를 나타냄
 - 해석 시간 감소를 위해 primary region의 격자는 한 층으로 구성하였으며, 반폭으로 해석을 수행함
 - 현재 해석 솔버에는 natural heat convection은 없다고 가정함
 - 현재 해석 결과에는, 엔진, 태양열등의 열원이 고려되지 않음

< 해수 공급 시스템 투시도>

<해수 분사 시, 선체 표면의 온도>

-26-

-27-

September 26, 2024

결론 및 향후 연구

- 한화오션 측에서 제공한 실험 데이터를 이용하여 해수 분사 영역을 추정함
 설계변인에 따른 해수 분사 영역 추정
- 물과 강판 사이 열전달 효과를 계산할 수 있는 해석 솔버를 개발함
 간단한 예시 케이스를 이용하여 열전달 효과가 잘 계산되는지 확인함
- 향후 연구
 - 개발한 해석 솔버를 이용하여 선체 냉각 효과 추정 예정
 - 엔진, 태양열에 의한 열 플럭스 고려 예정

감사합니다.

September 26, 2024