LM-AUSMPW + scheme for all-speed
on unstructured grid

___ )

Taeyoon Kung, Kyuhong Kim

2023.04.20.




Table of Contents

Introduction )

Previous study )

Improvement on scheme )

Conclusion )




Table of Contents

Q Introduction )




Introduction

® Characteristics which flow solver needs to have

[ Robustness & Accuracy ]
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Introduction

@ All-speed flow

= The mathematical properties of the equations vary depending on the
flow velocity range.

= It is common for users to use single method for the whole flow field.

= Most flux schemes which successfully solve the accuracy problem at
supersonic speed have difficulties in obtaining low Mach number flow
solution.
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Governing equations

@ Euler equations

Conservative form is used for compressible flow
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Baseline scheme: AUSMPW +/M-AUSMPW +

¢® AUSMPW +

Control convection property by considering both left and right states across
strong shock P numerical oscillation/overshoot is cured
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Baseline scheme: AUSMPW +/M-AUSMPW +

¢ M-AUSMPW +
Fi=Mfci® 1+ Mzci® 1+ Pip 1+ Prp, 1
2 z b2 2 P2 b2 R2
R1) The region of continuity can be distinguished from discontinuity

R2) Monotonic condition should be satisfied
R3) Convective quantity should maintain upwind characteristic in supersonic flow
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Modification of pressure splitting function which is aimed to improve accuracy in

steady shock discontinuity
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LM-AUSMPW+ scheme

€ New version of M-AUSMPW + scheme for low-speed accuracy

Manipulation of artificial dissipation based on the asymptotic analysis
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LM-AUSMPW+ scheme

€ New version of M-AUSMPW + scheme for low-speed accuracy
Convective term of LM-AUSMPW should satisfy following requirements

C1) Asymptotic characteristics of governing equations should be satisfied in additional numerical
dissipation.

C2) Supersonic characteristics of baseline scheme should be maintained.

C3) The size of numerical dissipation is determined according to Mach number region.

The order of numerical dissipation is manipulated to satisfy asymptotic
behavior of governing equations at low mach number region

Additional numerical dissipation is added to pressure term tied with
momentum equations to cure the instability due to zero numerical
dissipation
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LM-AUSMPW+ scheme

€ New version of M-AUSMPW + scheme for low-speed accuracy

m Low numerical dissipation in the region where Mach number is under 1

i AUSMPW + M — AUSMPW +

Initial

LM — AUSMPW + HLLC
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Limitation of LM-AUSMPW+ scheme

® LM-AUSMPW+ of previous study has 2 limitations

Accuracy problem
Artificial viscosity is always decreased in LM-AUSMPW+ scheme, compared to AUSM-
family
Controlled numerical dissipation makes pressure flux insufficient, leading to inaccurate
results (In particular, around mach number 0.5)
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Difficulties in applying to unstructured grid

Baseline scheme(M-AUSMPW +) uses superbee value as upper/lower bound to satisfy
TVD condition

Since TVD limiter cannot be applied to unstructured grid, LM-AUSMPW + scheme need
to be fixed for unstructured grid
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Accuracy problem

@ Inviscid flow past a circular bump
10% circular bump

[0,3] X [0,1] : 150 X 50 mesh is used
Freestream mach number : 0.001, 0.1, 0.675, 2.0
Governing equations : Euler equations

Spatial discretization : AUSMPW+ / M-AUSMPW+ / LM-AUSMPW +
Reconstruction : 3'd order MLP limiter

Time integration : LU-SGS with local time stepping
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Accuracy problem

@ Inviscid flow past a circular bump
w AUSMPW+ / M-AUSMPW+ / LM-AUSMPW+

Mach number contours around 10% bump with Mach number 0.001, 0.1, 0.675, 2.0




Accuracy problem

@ Inviscid flow past a circular bump

m Unphysical solution at transonic region due to the low pressure flux
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Accuracy problem

@ Inviscid flow past a circular bump

= Blending two functions
+ Pressure splitting function : Continuous & Differentiable
+ Convergence & Accuracy

AUSMPW+
M-AUSMPW+
LM-AUSMPW+
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Difficulties in applying to unstructured grid

@ Superbee value is replaced by MLP on unstructured grid
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Difficulties in applying to unstructured grid

€ Stationary contact discontinuity

Initial condition
(pLI up, pL) = (0125, 0! 1)1 (pR'uR! pR) = (101 01 1)
Discontinuity in density can be preserved by zero mass/pressure flux.

Discontinuity line is preserved although numerical dissipation is added.
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My = Mg - w(l+ fp) = 0
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Density

Difficulties in applying to unstructured grid

€ Moving contact discontinuity

10

Initial condition
(oL, ug, py) = (0.125,0.1125, 1),

TVD Runge — Kutta 3'™" order method with At = 0.005 until t = 2.5sec

AUSMPW+
M-AUSMPW+
LM-AUSMPW+
HLLC

Exact
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Density

Difficulties in applying to unstructured grid

€ Moving contact discontinuity
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Difficulties in applying to unstructured grid

€ Sod problem
Initial condition
(pr,up,p) = (1,0,1),

(pr,ugr, pr) = (0.125,0,0.1)
TVD Runge — Kutta 3'™" order method with At = 0.005 until t = 1.8sec

[0,10] with 100 points, 15t order reconstruction without re — evaluation process

AUSMPW+
M-AUSMPW+
LM-AUSMPW+
HLLC

Exact
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Difficulties in applying to unstructured grid

€ Sod problem

Initial condition
(pLI up, pL) = (1! Or 1)! (pR'uR' pR) = (01251 01 01)
TVD Runge — Kutta 3'" order method with At = 0.005 until t = 1.8sec

[0,10] with 100 points, 15t order reconstruction with re — evaluation process
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Conclusion

€ Summary

LM-AUSMPW + : extension of M-AUSMPW+ scheme for all-speed flow

Accuracy problem at the transonic region is cured
Pressure splitting function is newly defined to be continuous and differentiable

LM-AUSMPW + scheme is extended to the unstructured grid
Superbee limiter value is replaced by MLP-u1 value
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Receding shock

@ Supersonic inverse flow problem

= Initial condition
(pL,uL,pL) = (1, —2, 0.4), (pR,uR,pR) = (1, 2, 0.4)

w Asdf




Receding shock

@ Subsonic inverse flow problem

= Initial condition
(pLi uL,pL) == (1, —0.5, 0.4), (pR,uR,pR) == (1, 0.5, 0.4)

w Asdf




Riemann problem 5

® Shock entropy wave interaction

Initial condition

27 4V35 31 ,
(o, up,pL) = -9 "3 ) (Pr,ug,Pr) = (1 + esin(kx),0,1)

TVD Runge — Kutta 3'™" order method with At = 0.005 until t = 1.8sec

[0,10] with 100 points, 15t order reconstruction without re — evaluation process
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Riemann problem 5

® Shock entropy wave interaction

Initial condition

27 4V35 31 ,
(o, up,pL) = -9 "3 ) (Pr,ug,Pr) = (1 + esin(kx),0,1)

TVD Runge — Kutta 3'™" order method with At = 0.005 until t = 1.8sec

[0,10] with 100 points, 15t order reconstruction with re — evaluation process
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Riemann problem 6

€ Receding supersonic expansion

Initial condition

(pL' up, pL) = (1! _21 04)) (pR' UR, pR) = (11 21 04)
TVD Runge — Kutta 3'" order method with At = 0.005 until t = 1.8sec

[0,10] with 100 points, 15t order reconstruction with re — evaluation process
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2D bump

¢ Result
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