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◆ All-speed flow

■ The mathematical properties of the equations vary depending on the 

flow velocity range.

■ It is common for users to use single method for the whole flow field.

■ Most flux schemes which successfully solve the accuracy problem at 

supersonic speed have difficulties in obtaining low Mach number flow 

solution.

Introduction
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Previous study

• Governing equations

• Baseline scheme

• LM-AUSMPW+
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◆ Euler equations

■ Conservative form is used for compressible flow

𝜕𝑞

𝜕𝑡
+ 𝛻 ∙ 𝑓𝑐 𝑞 = 0

𝑞 =

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝑒𝑡

, 𝑓𝑐 𝑞 =

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣
𝜌𝑢𝐻

Ƹ𝑖 +

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝
𝜌𝑣𝐻

Ƹ𝑗

■ Nondimensionalization

𝜌∗ =
𝜌

𝜌∞
, 𝑢∗ =

𝑢

𝑢∞
, 𝑣∗ =

𝑣

𝑣∞
, 𝑥∗ =

𝑥

𝑙∞
,

𝑦∗ =
𝑦

𝑙∞
, 𝑝∗ =

𝑝

𝜌∞𝑐∞
2 , 𝑒

∗ =
𝑒

𝑐∞
2 , 𝑡

∗ =
𝑡

𝑢∞/𝑙∞

𝜕𝜌∗

𝜕𝑡∗
+ 𝛻 𝜌∗𝑢∗ = 0

𝜕

𝜕𝑡∗
𝜌∗𝑢∗ + 𝛻 𝜌∗𝑢∗𝑢∗ = −

1

𝑀∞
2 𝛻𝑝

∗

𝜕

𝜕𝑡∗
𝜌∗𝑒∗ + 𝛻 𝜌∗𝑒∗𝑢∗ + 𝑝∗𝑢∗ = 0

Governing equations
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◆ AUSMPW+

■ Control convection property by considering both left and right states across 

strong shock ▶ numerical oscillation/overshoot is cured

𝐹1
2
= ഥ𝑀𝐿

+𝑐1
2
𝛷𝐿 + ഥ𝑀𝑅

−𝑐1
2
𝛷𝑅 + 𝑃𝐿

+𝑝𝐿 + 𝑃𝑅
−𝑝𝑅

𝑖𝑓 𝑀𝐿
+ +𝑀𝑅

− ≥ 0,
ഥ𝑀𝐿
+ = 𝑀𝐿

+ +𝑀𝑅
− ∙ 1 − 𝑤 1 + 𝑓𝑅 − 𝑓𝐿

ഥ𝑀𝑅
− = 𝑀𝑅

− ∙ 𝑤 1 + 𝑓𝑅

𝑖𝑓 𝑀𝐿
+ +𝑀𝑅

− < 0,
ഥ𝑀𝐿
+ = 𝑀𝐿

+ ∙ 𝑤 1 + 𝑓𝐿
ഥ𝑀𝑅
− = 𝑀𝑅

− +𝑀𝐿
+ ∙ 1 − 𝑤 1 + 𝑓𝐿 − 𝑓𝑅

𝑓𝐿,𝑅 =
𝑝𝐿,𝑅
𝑝𝑠

− 1 min(1,
min(𝑝1,𝐿 , 𝑝1,𝑅 , 𝑝2,𝐿 , 𝑝2,𝑅)

min(𝑝𝐿, 𝑝𝑅)
)

𝑤 = 1 −min
𝑝𝑅
𝑝𝐿

,
𝑝𝐿
𝑝𝑅

3

Baseline scheme: AUSMPW+/M-AUSMPW+
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◆ M-AUSMPW+

𝐹1

2

= ഥ𝑀𝐿
+𝑐1

2

𝛷
𝐿,
1

2

+ ഥ𝑀𝑅
−𝑐1

2

𝛷
𝑅,
1

2

+ 𝑃𝐿
+𝑝

𝐿,
1

2

+ 𝑃𝑅
−𝑝

𝑅,
1

2

◆ R1) The region of continuity can be distinguished from discontinuity

◆ R2) Monotonic condition should be satisfied

◆ R3) Convective quantity should maintain upwind characteristic in supersonic flow

𝛷
𝐿,
1
2
= 𝛷𝐿 +

𝑚𝑎𝑥(0, (𝛷𝑅 −𝛷𝐿)(𝛷𝐿,𝑠𝑢𝑝 − 𝛷𝐿))

(𝛷𝑅 −𝛷𝐿) 𝛷𝐿,𝑠𝑢𝑝 −𝛷𝐿

𝑚𝑖𝑛 𝑎
𝛷𝑅 −𝛷𝐿

2
, 𝛷𝐿,𝑠𝑢𝑝 − 𝛷𝐿

𝛷
𝑅,
1
2
= 𝛷𝑅 +

𝑚𝑎𝑥(0, (𝛷𝐿 −𝛷𝑅)(𝛷𝑅,𝑠𝑢𝑝 − 𝛷𝑅))

(𝛷𝐿 − 𝛷𝑅) 𝛷𝑅,𝑠𝑢𝑝 −𝛷𝑅

𝑚𝑖𝑛 𝑎
𝛷𝐿 −𝛷𝑅

2
, 𝛷𝑅,𝑠𝑢𝑝 − 𝛷𝑅

𝑎 = 1 −𝑚𝑖𝑛 1,𝑚𝑎𝑥 𝑀𝐿 , 𝑀𝑅
2

◆ Modification of pressure splitting function which is aimed to improve accuracy in 

steady shock discontinuity

𝐼𝑓 𝑀𝑖
∗ > 1,𝑀𝑖+1

∗ < 1 𝑎𝑛𝑑 0 < 𝑀𝑖
∗𝑀𝑖+1

∗ < 1

𝑃𝑖+1
− = max(0,min 0.5,1 −

𝜌𝑖𝑈𝑖 𝑈𝑖 − 𝑈𝑖+1 + 𝑝𝑖
𝑝𝑖+1

)

𝐼𝑓 𝑀𝑖
∗ > −1,𝑀𝑖+1

∗ < −1 𝑎𝑛𝑑 0 < 𝑀𝑖
∗𝑀𝑖+1

∗ < 1

𝑃𝑖
+ = max(0,min 0.5,1 −

𝜌𝑖+1𝑈𝑖+1 𝑈𝑖+1 − 𝑈𝑖 + 𝑝𝑖+1
𝑝𝑖

)

Baseline scheme: AUSMPW+/M-AUSMPW+
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◆ New version of M-AUSMPW+ scheme for low-speed accuracy

■ Manipulation of artificial dissipation based on the asymptotic analysis

LM-AUSMPW+ scheme

AUSMPW+

1) 𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 1/𝑀∞
2

𝑝0,𝑖+1,𝑗
∗ − 𝑝0,𝑖−1,𝑗

∗ = 0

𝑝0,𝑖,𝑗+1
∗ − 𝑝0,𝑖,𝑗−1

∗ = 0

2) 𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 1/𝑀∞

1

2
෍

𝑙

𝑝1,𝑙 𝑛𝑖𝑙 𝑥 −
3

4
෍

𝑙

𝑢0,𝑙 ∙ 𝑛𝑥,𝑖𝑙
𝑐𝑖𝑗

𝑝0,𝑙 = 0

1

2
෍

𝑙

𝑝1,𝑙 𝑛𝑖𝑙 𝑦 −
3

4
෍

𝑙

𝑢0,𝑙 ∙ 𝑛𝑦,𝑖𝑙
𝑐𝑖𝑗

𝑝0,𝑙 = 0

M-AUSMPW+

1) 𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 1/𝑀∞
2

𝑝0,𝑖+1,𝑗
∗ − 𝑝0,𝑖−1,𝑗

∗ = 0

𝑝0,𝑖,𝑗+1
∗ − 𝑝0,𝑖,𝑗−1

∗ = 0

2) 𝑂𝑟𝑑𝑒𝑟 𝑜𝑓 1/𝑀∞

𝑝1,𝑖+1,𝑗
∗ − 𝑝1,𝑖−1,𝑗

∗ = 0

𝑝1,𝑖,𝑗+1
∗ − 𝑝1,𝑖,𝑗−1

∗ = 0

Governing equations

𝑝∗ 𝑥, 𝑡 = 𝑝0
∗ 𝑡 + 𝑀∞

2 𝑝2
∗ 𝑥, 𝑡 + ⋯ − 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑?
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◆ New version of M-AUSMPW+ scheme for low-speed accuracy

■ Convective term of LM-AUSMPW should satisfy following requirements

◆ C1) Asymptotic characteristics of governing equations should be satisfied in additional numerical 

dissipation.

◆ C2) Supersonic characteristics of baseline scheme should be maintained.

◆ C3) The size of numerical dissipation is determined according to Mach number region.

■ The order of numerical dissipation is manipulated to satisfy asymptotic 

behavior of governing equations at low mach number region

■ Additional numerical dissipation is added to pressure term tied with 

momentum equations to cure the instability due to zero numerical 

dissipation

𝑝1
2
=
𝑝𝐿 + 𝑝𝑅

2
+ 𝑃𝐿

+𝑝𝐿 + 𝑃𝑅
−𝑝𝑅 −

𝑝𝐿 + 𝑝𝑅
2

min 1,𝑀

+𝑃𝐿
+𝑃𝑅

−𝑀2 1 −𝑚𝑖𝑛 1,𝑚𝑎𝑥 𝑀𝐿 , 𝑀𝑅
2

𝑝𝑅 − 𝑝𝐿

LM-AUSMPW+ scheme
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◆ New version of M-AUSMPW+ scheme for low-speed accuracy

■ 𝐿𝑜𝑤 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑤ℎ𝑒𝑟𝑒 𝑀𝑎𝑐ℎ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑠 𝑢𝑛𝑑𝑒𝑟 1

LM-AUSMPW+ scheme

𝐼𝑛𝑖𝑡𝑖𝑎𝑙

𝐴𝑈𝑆𝑀𝑃𝑊 + 𝑀 − 𝐴𝑈𝑆𝑀𝑃𝑊 +

𝐿𝑀 − 𝐴𝑈𝑆𝑀𝑃𝑊 + 𝐻𝐿𝐿𝐶
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◆ LM-AUSMPW+ of previous study has 2 limitations

■ Accuracy problem

◆ Artificial viscosity is always decreased in LM-AUSMPW+ scheme, compared to AUSM-

family

◆ Controlled numerical dissipation makes pressure flux insufficient, leading to inaccurate 

results (In particular, around mach number 0.5)

𝑝1
2
=
𝑝𝐿 + 𝑝𝑅

2
+ 𝑃𝐿

+𝑝𝐿 + 𝑃𝑅
−𝑝𝑅 −

𝑝𝐿 + 𝑝𝑅
2

min 1,𝑀

■ Difficulties in applying to unstructured grid

◆ Baseline scheme(M-AUSMPW+) uses superbee value as upper/lower bound to satisfy 

TVD condition

◆ Since TVD limiter cannot be applied to unstructured grid, LM-AUSMPW+ scheme need 

to be fixed for unstructured grid

𝛷
𝐿,
1
2
= 𝛷𝐿 +

𝑚𝑎𝑥(0, (𝛷𝑅 −𝛷𝐿)(𝛷𝐿,𝑠𝑢𝑝 − 𝛷𝐿))

(𝛷𝑅 −𝛷𝐿) 𝛷𝐿,𝑠𝑢𝑝 −𝛷𝐿

𝑚𝑖𝑛 𝑎
𝛷𝑅 −𝛷𝐿

2
, 𝛷𝐿,𝑠𝑢𝑝 − 𝛷𝐿

Limitation of LM-AUSMPW+ scheme
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◆ Inviscid flow past a circular bump

■ 10% circular bump 

■ [0,3] X [0,1] : 150 X 50 mesh is used

■ Freestream mach number : 0.001, 0.1, 0.675, 2.0

◆ Governing equations : Euler equations

◆ Spatial discretization : AUSMPW+ / M-AUSMPW+ / LM-AUSMPW+

◆ Reconstruction : 3rd order MLP limiter

◆ Time integration : LU-SGS with local time stepping

Accuracy problem

Structured mesh of bump problem
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◆ Inviscid flow past a circular bump

■ AUSMPW+ / M-AUSMPW+ / LM-AUSMPW+

Accuracy problem

Mach number contours around 10% bump with Mach number 0.001, 0.1, 0.675, 2.0
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◆ Inviscid flow past a circular bump

■ Unphysical solution at transonic region due to the low pressure flux

𝑃1
2
, 𝐴𝑈𝑆𝑀−𝑓𝑎𝑚𝑖𝑙𝑦

= 𝑃𝐿
+𝑝𝐿 + 𝑃𝑅

−𝑝𝑅

𝑃1
2
, 𝐿𝑀−𝐴𝑈𝑆𝑀𝑃𝑊+

=
𝑝𝐿 + 𝑝𝑅

2
+ 𝐷𝑝min 1,𝑀

= 0.5 + 𝑃𝐿
+ − 0.5 min(1,𝑀) 𝑝𝐿 + 0.5 + 𝑃𝑅

− − 0.5 min(1,𝑀) 𝑝𝑅

Accuracy problem

Pressure splitting function (𝑃𝐿
+) 

LM-AUSMPW+ results
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◆ Inviscid flow past a circular bump

■ Blending two functions

◆ Pressure splitting function : Continuous & Differentiable

◆ Convergence & Accuracy

Accuracy problem

Error history (Mach number 0.001) New LM-AUSMPW+ results
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◆ Superbee value is replaced by MLP on unstructured grid

𝑞
𝑗𝑘,

1

2

= 𝑞𝑗𝑘 +
max 0, 𝑞𝑘𝑗−𝑞𝑗𝑘 𝑞𝑗𝑘,𝑀𝐿𝑃𝑢1−𝑞𝑗𝑘

𝑞𝑘𝑗−𝑞𝑗𝑘 𝑞𝑗𝑘,𝑀𝐿𝑃𝑢1−𝑞𝑗𝑘
×𝑚𝑖𝑛 𝑎

𝑞𝑘𝑗−𝑞𝑗𝑘

2
, 𝑞𝑗𝑘,𝑀𝐿𝑃𝑢1 − 𝑞𝑗𝑘

𝑞𝑗𝑘,𝑀𝐿𝑃𝑢1 = 𝑞0 + 𝜙𝑀𝐿𝑃∇𝑞0 ∙ 𝑟𝑗𝑘

𝜙𝑀𝐿𝑃 = ൞

𝜙 𝑟𝑗𝑘
𝑚𝑎𝑥 𝑖𝑓∇𝑞0 ∙ 𝑟𝑗𝑘 > 0

𝜙 𝑟𝑗𝑘
𝑚𝑖𝑛 𝑖𝑓∇𝑞0 ∙ 𝑟𝑗𝑘 > 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜙 = min(1, 𝑟max 𝑜𝑟 𝑚𝑖𝑛)

Difficulties in applying to unstructured grid
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◆ Stationary contact discontinuity

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 0.125, 0, 1 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 10, 0, 1

■ Discontinuity in density can be preserved by zero mass/pressure flux.

■ 𝐷𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 𝑙𝑖𝑛𝑒 𝑖𝑠 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑙𝑡ℎ𝑜𝑢𝑔ℎ 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑎𝑑𝑑𝑒𝑑.
ഥ𝑀𝐿
+ = 𝑀𝐿

+ +𝑀𝑅
− ∙ 1 − 𝑤 1 + 𝑓𝑅 − 𝑓𝐿 = 0

ഥ𝑀𝑅
− = 𝑀𝑅

− ∙ 𝑤 1 + 𝑓𝑅 = 0

𝑝1
2
= 𝑝𝐿 = 𝑝𝑅

Difficulties in applying to unstructured grid
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◆ Moving contact discontinuity

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 0.125, 0.1125, 1 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 10, 0.1125, 1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 2.5sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Difficulties in applying to unstructured grid
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◆ Moving contact discontinuity

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 0.125, 0.1125, 1 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 10, 0.1125, 1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 2.5sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Difficulties in applying to unstructured grid
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◆ Sod problem

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 1, 0, 1 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 0.125, 0, 0.1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 1.8sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Difficulties in applying to unstructured grid
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◆ Sod problem

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 1, 0, 1 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 0.125, 0, 0.1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 1.8sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Difficulties in applying to unstructured grid
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◆ Summary

■ LM-AUSMPW+ : extension of M-AUSMPW+ scheme for all-speed flow

◆ Accuracy problem at the transonic region is cured

◆ Pressure splitting function is newly defined to be continuous and differentiable

◆ LM-AUSMPW+ scheme is extended to the unstructured grid

◆ Superbee limiter value is replaced by MLP-u1 value

Conclusion
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◆ Supersonic inverse flow problem

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 1,−2, 0.4 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 1, 2, 0.4

■ Asdf

Receding shock
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◆ Subsonic inverse flow problem

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 1,−0.5, 0.4 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 1, 0.5, 0.4

■ Asdf

Receding shock
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◆ Shock entropy wave interaction

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 =
27

7
,
4 35

9
,
31

3
, 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 1 + 𝜖𝑠𝑖𝑛(𝑘𝑥), 0, 1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 1.8sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉𝒐𝒖𝒕 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Riemann problem 5
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◆ Shock entropy wave interaction

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 =
27

7
,
4 35

9
,
31

3
, 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 1 + 𝜖𝑠𝑖𝑛(𝑘𝑥), 0, 1

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 1.8sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Riemann problem 5
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◆ Receding supersonic expansion

■ Initial condition

𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿 = 1,−2, 0.4 , 𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅 = 1, 2, 0.4

■ TVD Runge − Kutta 3th order method with ∆t = 0.005 until t = 1.8sec

■ 0,10 with 100 points, 1st order recons𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝒘𝒊𝒕𝒉 𝒓𝒆 − 𝒆𝒗𝒂𝒍𝒖𝒂𝒕𝒊𝒐𝒏 𝒑𝒓𝒐𝒄𝒆𝒔𝒔

Riemann problem 6
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◆ Result

2D bump


	슬라이드 1: LM-AUSMPW+ scheme for all-speed on unstructured grid
	슬라이드 2: Table of Contents
	슬라이드 3: Table of Contents
	슬라이드 4: Introduction
	슬라이드 5: Introduction
	슬라이드 6: Table of Contents
	슬라이드 7: Governing equations
	슬라이드 8: Baseline scheme: AUSMPW+/M-AUSMPW+
	슬라이드 9: Baseline scheme: AUSMPW+/M-AUSMPW+
	슬라이드 10: LM-AUSMPW+ scheme
	슬라이드 11: LM-AUSMPW+ scheme
	슬라이드 12: LM-AUSMPW+ scheme
	슬라이드 13: Table of Contents
	슬라이드 14: Limitation of LM-AUSMPW+ scheme
	슬라이드 15: Accuracy problem
	슬라이드 16: Accuracy problem
	슬라이드 17: Accuracy problem
	슬라이드 18: Accuracy problem
	슬라이드 19: Difficulties in applying to unstructured grid
	슬라이드 20: Difficulties in applying to unstructured grid
	슬라이드 21: Difficulties in applying to unstructured grid
	슬라이드 22: Difficulties in applying to unstructured grid
	슬라이드 23: Difficulties in applying to unstructured grid
	슬라이드 24: Difficulties in applying to unstructured grid
	슬라이드 25: Table of Contents
	슬라이드 26: Conclusion
	슬라이드 27: Thank you for listening
	슬라이드 28: Receding shock
	슬라이드 29: Receding shock
	슬라이드 30: Riemann problem 5
	슬라이드 31: Riemann problem 5
	슬라이드 32: Riemann problem 6
	슬라이드 33: 2D bump

