NEXTfoam CFD Engineering Consulting

넥스트폼(NEXTfoam)은 CFD 엔지니어링 서비스를 제공하는 회사입니다.

2021년 한국항공우주학회 추계학술대회

OpenFOAM을 활용한 액적분사 해석

정황희¹, 신재렬 ¹⁺, 채종원²

1㈜넥스트폼 기술연구소, 2한국항공우주연구원

2021. 11. 19.

Contents

- Introduction
 - Storable Bipropellant Thruster
 - Development Goals
 - rocFlamFoam
- Numerical simulation & Results
 - Spray Dynamics
 - wall film formation
- Conclusion & Future work

Introduction - Bipropellant thruster

- Space pioneer project
 - Storable bipropellant thruster
 - 2021. 06. ~ 2025. 12. (55 month)

Introduction – development goals

Hypergolic Chemistry

Characteristics	design (5 step, 11 species)	remarks
MMH Decomposition	CH3(NH)NH2 → CH4+H2+N2	
NTO Decomposition	N2O4 → 2NO2	Ambiguous
CH4 – NO2 reaction	CH4+2.3NO2+H2 →	Arrhenius
	3H2O+1.15N2+0.4CO+0.6CO2	parameter
CH4 – CO2 reaction	CH4+0.5CO2+0.5H2O → 1.5CO+2.5H2	
H2O Decomposition	н20 ←→ н+он	
	[Design focus, Xu (2006)]	

Spray Dynamics

- Spray behavior
 - Sandia-A (heptane)

- Wall film model
- Shedd exp. (urea), AIAA 2009-998

roam

CFD consulting

한국학공우주연구원

GUI Configuration

Setup / Meshing Materials Boundary Condition Solutions Methods Controls	Material: 1 Unreacted ex EOS Iten c0 (m/s) s0 Gamma h	: Explosi xplosive Mie-Gru m	ve :) Value 2403.9 1.89574 0.99023 7.4	< Material Name : DXD-32 Mechanical constant Item Density_(kg/m ³) gama Ref_internal_energy_(J)	Value 1830 2 0	Add Del Sa Reaction Model Item I a G	KYP Value 66.62e+6 4.0 41.84e+6
Materials Boundary Condition iolutions Methods Controls	Material: 1 Unreacted ex EOS Iten c0 (m/s) s0 Gamma n	Explosive Mie-Gru	ve : Value 2403.9 1.89574 0.99023 7.4	Name : DXD-32 Mechanical constant Item Density_(kg/m ³) gamma Ref_internal_energy_(J)	value 1830 2 0	Add Del Sa Reaction Model item i a G	KYP Value 66.52e+6 4.0 41.84e+6
Boundary Condition iolutions Methods Controls	Unreacted ex EOS Iten c0 (m/s) s0 Gamma n	m	Value 2403.9 1.89574 0.99023 7.4	Mechanical constant Item Density_(kg/m ²) gamma Ref_internal_energy_(J)	Value 1830 2 0	Reaction Model Item I G	KYP Value 66.62e+6 4.0 41.84e+6
olutions Methods Controls	EOS Iten c0 (m/s) s0 Gamma n	Mie-Gru	Value 2403.9 1.89574 0.99023 7.4	Item Density_(kg/m ³) gamma Ref_internal_energy_(J)	Value 1830 2 0	I Item	Value 66.62e+6 4.0 41.84e+6
Methods Controls	Iten c0 (m/s) s0 Gamma n	m	Value 2403.9 1.89574 0.99023 7.4	Density_(kg/m ³) gamma Ref_internal_energy_(J)	1830 2 0	i item a G	Value 66.62e+6 4.0 41.84e+6
Methods Controls	c0 (m/s) s0 Gamma n		2403.9 1.89574 0.99023 7.4	gamma Ref_internal_energy_(J)	0	a G	4.0 41.84e+6
Controls	n L		7.4				
	n k		0.99023 7.4 50.e-11			ь	1.30
Run View Result	Detonation product						
		General	Malua				
	a (Pa) b (Pa) c (Pa) r1 r2	m	Value 628.6e+9 4.8e+9 1.3e+9 5.307 0.930				
	w		0.086				Apply
	Result	Result Be APA	ew Rem Reput PP0 PP0	ew Rem Value 04701 628.erg 628.erg 04701 628.erg 628.erg 04701 628.erg 628.erg 10701 628.erg 628.erg 11 5327 12.erg 12 0.352 0.065	Em Value Retult 4Poi 68.649 6.90 4.849 (200) 10 3.369 (110) 11 5.357 (200) 12 6530 0.066	Brem Value Result 42% VP0 42% VP0 42% VP1 42% VP1 52% VP1 52%	Em Value Result 4Poi 624609 0 Poi 63609 6796 0 Poi 63501 1369 12 6350 12 VOLTime br. 693417 5 5

- 메뉴바 (New/Load/Save/Exit)
- 프로젝트를 생성/읽기/저장하기 위한 메뉴
- 설정 메뉴 (Problem/Solution/View)
 - 진행 작업 또는 메뉴의 버튼에 따라 화면 전환

2021년 한국항공우주학회 추계학술대회

4/19

Development Target

- ROCFLAM
 - Compressible -sub, trans and supersonic
 - 2D axisymmetric finite volume, SIMPLE algorithm
 - standard k-ε with wall function, 2 layer model
 - Multi-gaseous species chemistry
 - Arrhenius, EDC, global chemistry
 - standard jannaf property data
 - Lagrangian
 - droplet-to-wall interaction model
 - secondary droplet break-up
 - annular film cooling model
 - viscous heating species diffusion
 - heat conduction in solid wall

Development of rocFlamFoam

ROCFLAM

- Compressible -sub, trans and supersonic
- 2D axisymmetric finite volume, SIMPLE algorithm
- standard k-ε with wall function, 2 layer model
- Multi-gaseous species chemistry
- Arrhenius, EDC, global chemistry
- standard jannaf property data
- Lagrangian
- droplet-to-wall interaction model
- secondary droplet break-up
- annular film cooling model
- viscous heating species diffusion
- heat conduction in solid wall

- PCNFoam(PISOCentralNFoam)
 - Compressible -sub, trans and supersonic
 - 3D finite volume, PIMPLE algorithm
 - Kurganov-Tadmor flux scheme
 - RANS/LES, wall function, 2 layer model
 - farField, Reimann boundary condition

- chtMultiRegionFoam
 - Conjugate heat transfer between regions
 - Incompressible
 - 3D finite volume, PIMPLE algorithm
 - RANS/LES, wall function, 2 layer model
 - Buoyancy effect
 - Multi-species chemistry
 - Arrhenius, EDC, EDM, PaSR
 - jannaf, CHEMKIN
 - Radiation
 - P1, fvDOM, viewFactor

- SprayFoam
 - Compressible -sub, transonic
 - 3D finite volume, PIMPLE algorithm
 - RANS/LES, wall function
 - Multi-species chemistry
 - Arrhenius, EDC, EDM, PaSR
 - jannaf, CHEMKIN
 - Lagrangian
 - droplet-to-wall Patch Interaction Model
 - E/TAB, KHRT 2nd break-up
 - wall film model
 - Radiation
 - P1, fvDOM, viewFactor

Star Sec. Or

Numerical simulation & Results

- Spray Dynamics
 - nonreacting spray
 - reacting spray
 - wall film formation

- Spray modeling
 - SANDIA spray H n-heptane
 - Constant volume chamber

[SANDIA heptane spray experiment]

source: <u>https://ecn.sandia.gov/ecn-data-search/</u>

[Experiment condition]

Nozzle Dia.	Fuel temp.	Fuel Pres.	Total fuel mass	Injection duration	Amb. pres.	Amb. temp.	Amb. dens.
0.1 mm	373 K	150 Mpa	17.8 mg	6.8 ms	4.33 Mpa	850 K	14.8 kg/m ³

• Spray modeling

- Cylinder shape
- Mesh tool: cfMesh (cartesianMesh)
- Base mesh cell size: 1 mm
- Refinement cell size:

coarse: 1 mm (1.38 M Cells)

medium: 0.5 mm (2.1 M cells)

fine: 0.25 mm (7.8 M cells)

- Numerical method
 - Solver: **sprayFoam** in OpenFOAM
 - Pimple algorism
 - 2nd breakup: KHRT model
 - B_0 =0.61, B_1 =40, C_{τ} =1, C_{RT} =0.1

- Spray injection model
 - Cone nozzle type
 - Spray half angle: 12.6°
 - Size distribution: Rosin Rammler (min: 1x10⁻³, max: 9.27x10⁻² [mm], n =2)

Results – grid resolution

open source CFD consulting KII

Comparison of vapor penetration

[vapor penetration]

- Reacting condition
 - n-heptane global reaction

$$C_7 H_{16} + 11 O_2 => 7 CO_2 + 8 H_2 O$$

- CHEMKIN To Foam
- Mixture fraction
- Thermo: JANAF table
- Transport: Sutherland

Reacting results

[Temperature distribution]

Wall film formation

Figure 18: External and internal wall temperature distribution for the load point R2 of the 22 N thruster

Figure 19: External and internal wall temperature distribution for the reference point R of the 22 N thruster

Wall film formation

[shedd exp. AIAA 2009-998]

Table 1. List of operating conditions with specific cases highlighted for further discussion.

Case	Liquid Jet	Crossflow	Liquid Re	Aerodynamic	q	Impingement
	Velocity (m/s)	(m/s)		VVe		Туре
1	4.2	72	1935	155	1.9	Spray
2	8.5	72	3870	155	7.6	Spray
3	12.7	72	5800	155	17.1	Spray
4	17.0	72	7740	155	30.4	Jet
5	21.2	72	9670	155	47.4	Jet
6	4.2	81	1935	195	1.5	Spray
7	8.5	81	3870	195	6.0	Spray
8	12.7	81	5800	195	13.5	Spray
9	17.0	81	7740	195	24.0	Jet
10	21.2	81	9670	195	37.5	Jet
11	4.2	99	1935	290	1.0	Spray
12	8.5	99	3870	290	4.0	Spray
-	30 mm					
10 mm	We q =	= 155 30.4		We = 155 q = 17.1 V	Ve = 155 1 = 7.6	And the second second
1	We q =	= 195 24.0		We = 195 q = 13.5 V	Ve = 195 1 = 6.0	barn frage
1	We q =	= 290 16.1		We = 290 q = 9.0	We = 290 q = 4.0	a len of

Figure 5. Spray trajectory and penetration as a function of Weber number (We) and momentum-flux ratio (q).

- Wall film formation
 - cfMesh (cartesianMesh)
 - Coarse: 0.52 M cells
 - Solver: sprayPimpleCentralFoam
 - ETAB breakup model

[case condition]

	values
mDot	1.945 g/s
Uinj	12.7 m/s
Uinf	81 m/s

Grover and Assanis (2001)

한국학공우주연구원

- Wall film formation
 - Spray trajectory

이 한국학장우주연구원

CFD consulting

Conclusion & Future work

- Modify and development of SprayFoam, sprayPimpleCentralFoam
- Future work

[Conjugate Heat Transfer]

[Graphical User Interface]

• Localization of storable bipropellant thruster (analysis S/W)

Thank you for your attention.

