An Automated Analysis Process for Missile Using Open-source Software

Kang Kuk You, Jung Hyun Ha and Sang Chul Lee

- Introduction
- Automated Analysis Process

1

- Benchmark Test
- Conclusion

- Missile Aerodynamic Design
 - Various shape types
 - Wide range of flight conditions

- Semi-empirical code
 - Use text-based inputs
 - Less computational time
 - Low accuracy

```
CASEID Missile Geometry

DIM M

DERIV RAD

$FLTCON

NALPHA = 4.00000,

ALPHA = 0.00000, 1.00000, 2.00000, 3.00000,

NMACH = 4.00000,

MACH = 0.60000, 1.20000, 1.50000, 2.00000,

ALT = 0.00000,

PHI = 45.00000,

$END
```

- Semi-empirical code
 - Use text based inputs
 - Less computational time
 - Low accuracy

```
CASEID Missile Geometry

DIM M

DERIV RAD

$FLTCON

NALPHA = 4.00000,

ALPHA = 0.00000, 1.00000, 2.00000, 3.00000,

NMACH = 4.00000,

MACH = 0.60000, 1.20000, 1.50000, 2.00000,

ALT = 0.00000,

PHI = 45.00000,

$END
```

CFD

- High accuracy
- Require CAD and mesh

- Challenges
 - A large number of simulation cases
 - Automation process should be required
 - ✓ Creating CAD for various missile shapes
 - ✓ Generating volume mesh
 - ✓ Flow solver pre-processing

- Objectives
 - Develop automated aerodynamic analysis process
 - ✓ Geometry modeling
 - ✓ Mesh generation
 - ✓ Flow Analysis

- Description
 - Developed using open-source software
 - XML file format is used for input parameters
 - No user intervention

- Geometry Modeling
 - Use pythonOCC library
 - ✓ python version of OpenCASCADE
 - Based on Missile DATCOM's definition method
 - All sharp edges are modified to blunted edges

- Geometry Modeling
 - Body
 - ✓ Option 1 : combination of nose, center body, after body
 - ✓ Option 2 : longitudinal data represented (X, R)

Geometry Modeling Hexagonal Finset ullet z_1 Planform \checkmark L_{max} L_{flat} Arc Airfoil \checkmark Attaching method \checkmark z_l $Y \blacklozenge$ $\dot{\gamma}(n)$ s(n) $X_{LE}(n)$ $\phi(n)$ c(n) \overrightarrow{X} 0

9

- Geometry Modeling
 - Various missiles can be created with different inputs

```
<Item Name="Body" Type="Body1">
    <Item Name="Nose" Type="NOSE">
        <X0>0.000000</X0>
        <TNOSE>OGIVE</TNOSE>
        <LNOSE>0.068600</LNOSE>
        <WNOSE>0.030480</WNOSE>
        <BNOSE>0.001524</BNOSE>
        <ENOSE>1.000000</ENOSE>
        <TRUNC>.FALSE.</TRUNC>
    </Item>
    <Item Name="Centr" Type="CENTR"...>
    <Item Name="Aft" Type="AFT"...>
</Item>
```


- Mesh Generation
 - Volume mesh is generated using **SALOME**
 - ✓ Open-source platform for numerical simulation
 - ✓ Limitation : Mesh parallelization is not supported
 - Unstructured tetrahedral mesh with prism layers

- Mesh Generation
 - Domain
 - ✓ Sphere

Mesh Generation

- Refinement regions
 - \checkmark To accurately capture shock wave and wake flow

- Mesh Generation
 - Mesh size parameters are applied at each regions
 - ✓ Min, max, growth rate

- Mesh size at specific surface is automatically set
 - ✓ Body Nose / Base surface
 - ✓ Finset Tip surface

- Flow Analysis
 - RANS analysis is conducted using OpenFOAM
 - ✓ Simulation case is consist of *0, constant,* and *system* directory

- TSLAeroFoam is used for numerical solver
 - ✓ Density-based compressible coupled solver

• $k - \omega SST$ model is set for turbulence model

- Flow Analysis
 - Flow conditions and gas constants are considered as input parameters
 - ✓ Flow conditions : M, P, T, AoA
 - ✓ Gas constants : γ , C_p , Pr
 - Case directories are automatically generated

- Case 1 (NASA Sparrow)
 - Geometry : X Configuration

• Flow Condition

	Value
М	1.5
P(Pa)	18114.8
T(K)	233.793

- Case 1 (NASA Sparrow)
 - Mesh
 - ✓ 20 prism layers with $y^+ = 1$
 - ✓ Total 23.3 million volume mesh

- Case 1 (NASA Sparrow)
 - Result
 - \checkmark C_A is overpredicted at high α

- Case 1 (NASA Sparrow)
 - Result
 - ✓ C_N is in very good agreement at all α

- Case 1 (NASA Sparrow)
 - Result
 - \checkmark C_M matches overall trendline

- Case 2 (NASA TCM)
 - Geometry : + Configuration

• Flow Condition

	Value
М	3.5
P(Pa)	1696.55
T(K)	94.2029

- Case 2 (NASA TCM)
 - Mesh
 - ✓ 20 prism layers with $y^+ = 1$
 - ✓ Total 25.5 million volume mesh

- Case 2 (NASA TCM)
 - Result
 - ✓ Experiment data have some oscillation
 - \checkmark C_A is overpredicted but matches overall trendline

- Case 2 (NASA TCM)
 - Result
 - ✓ C_N , C_M are in very good agreement at all α

- Case 2 (NASA TCM)
 - Result
 - ✓ C_N , C_M are in very good agreement at all α

Conclusion

- Fully automated aerodynamic analysis process is developed based on open-source software
 - Geometry Modeling
 - Mesh Generation
 - Flow Analysis
- Automated process is verified with two missiles
 - Prediction accuracy is in good agreement

Thank You.

- Mesh Generation
 - Example

- Case 1 (NASA Sparrow)
 - Pressure Contour

 $\alpha = 0^{\circ}$

✓ Shock wave is accurately captured

 $\alpha = 32^{\circ}$

- Case 2 (NASA TCM)
 - Pressure Contour
 - ✓ Shock wave is accurately captured

$$\alpha = 0^{\circ}$$

 $\alpha = 18^{\circ}$